| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dprdcntz2.1 |
|- ( ph -> G dom DProd S ) |
| 2 |
|
dprdcntz2.2 |
|- ( ph -> dom S = I ) |
| 3 |
|
dprdcntz2.c |
|- ( ph -> C C_ I ) |
| 4 |
|
dprdcntz2.d |
|- ( ph -> D C_ I ) |
| 5 |
|
dprdcntz2.i |
|- ( ph -> ( C i^i D ) = (/) ) |
| 6 |
|
dprdcntz2.z |
|- Z = ( Cntz ` G ) |
| 7 |
1 2 3
|
dprdres |
|- ( ph -> ( G dom DProd ( S |` C ) /\ ( G DProd ( S |` C ) ) C_ ( G DProd S ) ) ) |
| 8 |
7
|
simpld |
|- ( ph -> G dom DProd ( S |` C ) ) |
| 9 |
|
dmres |
|- dom ( S |` C ) = ( C i^i dom S ) |
| 10 |
3 2
|
sseqtrrd |
|- ( ph -> C C_ dom S ) |
| 11 |
|
dfss2 |
|- ( C C_ dom S <-> ( C i^i dom S ) = C ) |
| 12 |
10 11
|
sylib |
|- ( ph -> ( C i^i dom S ) = C ) |
| 13 |
9 12
|
eqtrid |
|- ( ph -> dom ( S |` C ) = C ) |
| 14 |
|
dprdgrp |
|- ( G dom DProd S -> G e. Grp ) |
| 15 |
1 14
|
syl |
|- ( ph -> G e. Grp ) |
| 16 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 17 |
16
|
dprdssv |
|- ( G DProd ( S |` D ) ) C_ ( Base ` G ) |
| 18 |
16 6
|
cntzsubg |
|- ( ( G e. Grp /\ ( G DProd ( S |` D ) ) C_ ( Base ` G ) ) -> ( Z ` ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 19 |
15 17 18
|
sylancl |
|- ( ph -> ( Z ` ( G DProd ( S |` D ) ) ) e. ( SubGrp ` G ) ) |
| 20 |
|
fvres |
|- ( x e. C -> ( ( S |` C ) ` x ) = ( S ` x ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) = ( S ` x ) ) |
| 22 |
1 2 4
|
dprdres |
|- ( ph -> ( G dom DProd ( S |` D ) /\ ( G DProd ( S |` D ) ) C_ ( G DProd S ) ) ) |
| 23 |
22
|
simpld |
|- ( ph -> G dom DProd ( S |` D ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ x e. C ) -> G dom DProd ( S |` D ) ) |
| 25 |
|
dprdsubg |
|- ( G dom DProd ( S |` D ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 26 |
24 25
|
syl |
|- ( ( ph /\ x e. C ) -> ( G DProd ( S |` D ) ) e. ( SubGrp ` G ) ) |
| 27 |
3
|
sselda |
|- ( ( ph /\ x e. C ) -> x e. I ) |
| 28 |
1 2
|
dprdf2 |
|- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 30 |
27 29
|
syldan |
|- ( ( ph /\ x e. C ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 31 |
|
dmres |
|- dom ( S |` D ) = ( D i^i dom S ) |
| 32 |
4 2
|
sseqtrrd |
|- ( ph -> D C_ dom S ) |
| 33 |
|
dfss2 |
|- ( D C_ dom S <-> ( D i^i dom S ) = D ) |
| 34 |
32 33
|
sylib |
|- ( ph -> ( D i^i dom S ) = D ) |
| 35 |
31 34
|
eqtrid |
|- ( ph -> dom ( S |` D ) = D ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ x e. C ) -> dom ( S |` D ) = D ) |
| 37 |
15
|
adantr |
|- ( ( ph /\ x e. C ) -> G e. Grp ) |
| 38 |
16
|
subgss |
|- ( ( S ` x ) e. ( SubGrp ` G ) -> ( S ` x ) C_ ( Base ` G ) ) |
| 39 |
30 38
|
syl |
|- ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( Base ` G ) ) |
| 40 |
16 6
|
cntzsubg |
|- ( ( G e. Grp /\ ( S ` x ) C_ ( Base ` G ) ) -> ( Z ` ( S ` x ) ) e. ( SubGrp ` G ) ) |
| 41 |
37 39 40
|
syl2anc |
|- ( ( ph /\ x e. C ) -> ( Z ` ( S ` x ) ) e. ( SubGrp ` G ) ) |
| 42 |
|
fvres |
|- ( y e. D -> ( ( S |` D ) ` y ) = ( S ` y ) ) |
| 43 |
42
|
adantl |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( ( S |` D ) ` y ) = ( S ` y ) ) |
| 44 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> G dom DProd S ) |
| 45 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> dom S = I ) |
| 46 |
4
|
adantr |
|- ( ( ph /\ x e. C ) -> D C_ I ) |
| 47 |
46
|
sselda |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> y e. I ) |
| 48 |
27
|
adantr |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> x e. I ) |
| 49 |
|
simpr |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> y e. D ) |
| 50 |
|
noel |
|- -. x e. (/) |
| 51 |
|
elin |
|- ( x e. ( C i^i D ) <-> ( x e. C /\ x e. D ) ) |
| 52 |
5
|
eleq2d |
|- ( ph -> ( x e. ( C i^i D ) <-> x e. (/) ) ) |
| 53 |
51 52
|
bitr3id |
|- ( ph -> ( ( x e. C /\ x e. D ) <-> x e. (/) ) ) |
| 54 |
50 53
|
mtbiri |
|- ( ph -> -. ( x e. C /\ x e. D ) ) |
| 55 |
|
imnan |
|- ( ( x e. C -> -. x e. D ) <-> -. ( x e. C /\ x e. D ) ) |
| 56 |
54 55
|
sylibr |
|- ( ph -> ( x e. C -> -. x e. D ) ) |
| 57 |
56
|
imp |
|- ( ( ph /\ x e. C ) -> -. x e. D ) |
| 58 |
57
|
adantr |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> -. x e. D ) |
| 59 |
|
nelne2 |
|- ( ( y e. D /\ -. x e. D ) -> y =/= x ) |
| 60 |
49 58 59
|
syl2anc |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> y =/= x ) |
| 61 |
44 45 47 48 60 6
|
dprdcntz |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( S ` y ) C_ ( Z ` ( S ` x ) ) ) |
| 62 |
43 61
|
eqsstrd |
|- ( ( ( ph /\ x e. C ) /\ y e. D ) -> ( ( S |` D ) ` y ) C_ ( Z ` ( S ` x ) ) ) |
| 63 |
24 36 41 62
|
dprdlub |
|- ( ( ph /\ x e. C ) -> ( G DProd ( S |` D ) ) C_ ( Z ` ( S ` x ) ) ) |
| 64 |
6 26 30 63
|
cntzrecd |
|- ( ( ph /\ x e. C ) -> ( S ` x ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 65 |
21 64
|
eqsstrd |
|- ( ( ph /\ x e. C ) -> ( ( S |` C ) ` x ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |
| 66 |
8 13 19 65
|
dprdlub |
|- ( ph -> ( G DProd ( S |` C ) ) C_ ( Z ` ( G DProd ( S |` D ) ) ) ) |