| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsppwf1o.f |
|- F = ( n e. ( 0 ... A ) |-> ( P ^ n ) ) |
| 2 |
|
breq1 |
|- ( x = ( P ^ n ) -> ( x || ( P ^ A ) <-> ( P ^ n ) || ( P ^ A ) ) ) |
| 3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 4 |
3
|
adantr |
|- ( ( P e. Prime /\ A e. NN0 ) -> P e. NN ) |
| 5 |
|
elfznn0 |
|- ( n e. ( 0 ... A ) -> n e. NN0 ) |
| 6 |
|
nnexpcl |
|- ( ( P e. NN /\ n e. NN0 ) -> ( P ^ n ) e. NN ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P ^ n ) e. NN ) |
| 8 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 9 |
8
|
ad2antrr |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> P e. ZZ ) |
| 10 |
5
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> n e. NN0 ) |
| 11 |
|
elfzuz3 |
|- ( n e. ( 0 ... A ) -> A e. ( ZZ>= ` n ) ) |
| 12 |
11
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> A e. ( ZZ>= ` n ) ) |
| 13 |
|
dvdsexp |
|- ( ( P e. ZZ /\ n e. NN0 /\ A e. ( ZZ>= ` n ) ) -> ( P ^ n ) || ( P ^ A ) ) |
| 14 |
9 10 12 13
|
syl3anc |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P ^ n ) || ( P ^ A ) ) |
| 15 |
2 7 14
|
elrabd |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P ^ n ) e. { x e. NN | x || ( P ^ A ) } ) |
| 16 |
|
simpl |
|- ( ( P e. Prime /\ A e. NN0 ) -> P e. Prime ) |
| 17 |
|
elrabi |
|- ( m e. { x e. NN | x || ( P ^ A ) } -> m e. NN ) |
| 18 |
|
pccl |
|- ( ( P e. Prime /\ m e. NN ) -> ( P pCnt m ) e. NN0 ) |
| 19 |
16 17 18
|
syl2an |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) e. NN0 ) |
| 20 |
16
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> P e. Prime ) |
| 21 |
17
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m e. NN ) |
| 22 |
21
|
nnzd |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m e. ZZ ) |
| 23 |
8
|
ad2antrr |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> P e. ZZ ) |
| 24 |
|
simplr |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> A e. NN0 ) |
| 25 |
|
zexpcl |
|- ( ( P e. ZZ /\ A e. NN0 ) -> ( P ^ A ) e. ZZ ) |
| 26 |
23 24 25
|
syl2anc |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P ^ A ) e. ZZ ) |
| 27 |
|
breq1 |
|- ( x = m -> ( x || ( P ^ A ) <-> m || ( P ^ A ) ) ) |
| 28 |
27
|
elrab |
|- ( m e. { x e. NN | x || ( P ^ A ) } <-> ( m e. NN /\ m || ( P ^ A ) ) ) |
| 29 |
28
|
simprbi |
|- ( m e. { x e. NN | x || ( P ^ A ) } -> m || ( P ^ A ) ) |
| 30 |
29
|
adantl |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m || ( P ^ A ) ) |
| 31 |
|
pcdvdstr |
|- ( ( P e. Prime /\ ( m e. ZZ /\ ( P ^ A ) e. ZZ /\ m || ( P ^ A ) ) ) -> ( P pCnt m ) <_ ( P pCnt ( P ^ A ) ) ) |
| 32 |
20 22 26 30 31
|
syl13anc |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) <_ ( P pCnt ( P ^ A ) ) ) |
| 33 |
|
pcidlem |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 34 |
33
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 35 |
32 34
|
breqtrd |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) <_ A ) |
| 36 |
|
fznn0 |
|- ( A e. NN0 -> ( ( P pCnt m ) e. ( 0 ... A ) <-> ( ( P pCnt m ) e. NN0 /\ ( P pCnt m ) <_ A ) ) ) |
| 37 |
24 36
|
syl |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( ( P pCnt m ) e. ( 0 ... A ) <-> ( ( P pCnt m ) e. NN0 /\ ( P pCnt m ) <_ A ) ) ) |
| 38 |
19 35 37
|
mpbir2and |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( P pCnt m ) e. ( 0 ... A ) ) |
| 39 |
|
oveq2 |
|- ( n = A -> ( P ^ n ) = ( P ^ A ) ) |
| 40 |
39
|
breq2d |
|- ( n = A -> ( m || ( P ^ n ) <-> m || ( P ^ A ) ) ) |
| 41 |
40
|
rspcev |
|- ( ( A e. NN0 /\ m || ( P ^ A ) ) -> E. n e. NN0 m || ( P ^ n ) ) |
| 42 |
24 30 41
|
syl2anc |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> E. n e. NN0 m || ( P ^ n ) ) |
| 43 |
|
pcprmpw2 |
|- ( ( P e. Prime /\ m e. NN ) -> ( E. n e. NN0 m || ( P ^ n ) <-> m = ( P ^ ( P pCnt m ) ) ) ) |
| 44 |
16 17 43
|
syl2an |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> ( E. n e. NN0 m || ( P ^ n ) <-> m = ( P ^ ( P pCnt m ) ) ) ) |
| 45 |
42 44
|
mpbid |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ m e. { x e. NN | x || ( P ^ A ) } ) -> m = ( P ^ ( P pCnt m ) ) ) |
| 46 |
45
|
adantrl |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> m = ( P ^ ( P pCnt m ) ) ) |
| 47 |
|
oveq2 |
|- ( n = ( P pCnt m ) -> ( P ^ n ) = ( P ^ ( P pCnt m ) ) ) |
| 48 |
47
|
eqeq2d |
|- ( n = ( P pCnt m ) -> ( m = ( P ^ n ) <-> m = ( P ^ ( P pCnt m ) ) ) ) |
| 49 |
46 48
|
syl5ibrcom |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> ( n = ( P pCnt m ) -> m = ( P ^ n ) ) ) |
| 50 |
|
elfzelz |
|- ( n e. ( 0 ... A ) -> n e. ZZ ) |
| 51 |
|
pcid |
|- ( ( P e. Prime /\ n e. ZZ ) -> ( P pCnt ( P ^ n ) ) = n ) |
| 52 |
16 50 51
|
syl2an |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> ( P pCnt ( P ^ n ) ) = n ) |
| 53 |
52
|
eqcomd |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ n e. ( 0 ... A ) ) -> n = ( P pCnt ( P ^ n ) ) ) |
| 54 |
53
|
adantrr |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> n = ( P pCnt ( P ^ n ) ) ) |
| 55 |
|
oveq2 |
|- ( m = ( P ^ n ) -> ( P pCnt m ) = ( P pCnt ( P ^ n ) ) ) |
| 56 |
55
|
eqeq2d |
|- ( m = ( P ^ n ) -> ( n = ( P pCnt m ) <-> n = ( P pCnt ( P ^ n ) ) ) ) |
| 57 |
54 56
|
syl5ibrcom |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> ( m = ( P ^ n ) -> n = ( P pCnt m ) ) ) |
| 58 |
49 57
|
impbid |
|- ( ( ( P e. Prime /\ A e. NN0 ) /\ ( n e. ( 0 ... A ) /\ m e. { x e. NN | x || ( P ^ A ) } ) ) -> ( n = ( P pCnt m ) <-> m = ( P ^ n ) ) ) |
| 59 |
1 15 38 58
|
f1o2d |
|- ( ( P e. Prime /\ A e. NN0 ) -> F : ( 0 ... A ) -1-1-onto-> { x e. NN | x || ( P ^ A ) } ) |