| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fouriercn.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fouriercn.t |
|- T = ( 2 x. _pi ) |
| 3 |
|
fouriercn.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 4 |
|
fouriercn.dv |
|- ( ph -> ( RR _D F ) e. ( RR -cn-> CC ) ) |
| 5 |
|
fouriercn.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 6 |
|
fouriercn.x |
|- ( ph -> X e. RR ) |
| 7 |
|
fouriercn.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 8 |
|
fouriercn.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 9 |
5
|
dmeqi |
|- dom G = dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 10 |
|
ioossre |
|- ( -u _pi (,) _pi ) C_ RR |
| 11 |
|
cncff |
|- ( ( RR _D F ) e. ( RR -cn-> CC ) -> ( RR _D F ) : RR --> CC ) |
| 12 |
|
fdm |
|- ( ( RR _D F ) : RR --> CC -> dom ( RR _D F ) = RR ) |
| 13 |
4 11 12
|
3syl |
|- ( ph -> dom ( RR _D F ) = RR ) |
| 14 |
10 13
|
sseqtrrid |
|- ( ph -> ( -u _pi (,) _pi ) C_ dom ( RR _D F ) ) |
| 15 |
|
ssdmres |
|- ( ( -u _pi (,) _pi ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) ) |
| 16 |
14 15
|
sylib |
|- ( ph -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) ) |
| 17 |
9 16
|
eqtrid |
|- ( ph -> dom G = ( -u _pi (,) _pi ) ) |
| 18 |
17
|
difeq2d |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) = ( ( -u _pi (,) _pi ) \ ( -u _pi (,) _pi ) ) ) |
| 19 |
|
difid |
|- ( ( -u _pi (,) _pi ) \ ( -u _pi (,) _pi ) ) = (/) |
| 20 |
18 19
|
eqtrdi |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) = (/) ) |
| 21 |
|
0fi |
|- (/) e. Fin |
| 22 |
20 21
|
eqeltrdi |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
| 23 |
|
rescncf |
|- ( ( -u _pi (,) _pi ) C_ RR -> ( ( RR _D F ) e. ( RR -cn-> CC ) -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) ) |
| 24 |
10 4 23
|
mpsyl |
|- ( ph -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
| 25 |
5
|
a1i |
|- ( ph -> G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 26 |
17
|
oveq1d |
|- ( ph -> ( dom G -cn-> CC ) = ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
| 27 |
24 25 26
|
3eltr4d |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
| 28 |
|
pire |
|- _pi e. RR |
| 29 |
28
|
renegcli |
|- -u _pi e. RR |
| 30 |
28
|
rexri |
|- _pi e. RR* |
| 31 |
|
icossre |
|- ( ( -u _pi e. RR /\ _pi e. RR* ) -> ( -u _pi [,) _pi ) C_ RR ) |
| 32 |
29 30 31
|
mp2an |
|- ( -u _pi [,) _pi ) C_ RR |
| 33 |
|
eldifi |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> x e. ( -u _pi [,) _pi ) ) |
| 34 |
32 33
|
sselid |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> x e. RR ) |
| 35 |
|
limcresi |
|- ( ( RR _D F ) limCC x ) C_ ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) limCC x ) |
| 36 |
5
|
reseq1i |
|- ( G |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) |
| 37 |
|
resres |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) |
| 38 |
36 37
|
eqtr2i |
|- ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) = ( G |` ( x (,) +oo ) ) |
| 39 |
38
|
oveq1i |
|- ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) limCC x ) = ( ( G |` ( x (,) +oo ) ) limCC x ) |
| 40 |
35 39
|
sseqtri |
|- ( ( RR _D F ) limCC x ) C_ ( ( G |` ( x (,) +oo ) ) limCC x ) |
| 41 |
4
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( RR _D F ) e. ( RR -cn-> CC ) ) |
| 42 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
| 43 |
41 42
|
cnlimci |
|- ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( RR _D F ) limCC x ) ) |
| 44 |
40 43
|
sselid |
|- ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( G |` ( x (,) +oo ) ) limCC x ) ) |
| 45 |
44
|
ne0d |
|- ( ( ph /\ x e. RR ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 46 |
34 45
|
sylan2 |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 47 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
| 48 |
|
eldifi |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> x e. ( -u _pi (,] _pi ) ) |
| 49 |
47 48
|
sselid |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> x e. RR ) |
| 50 |
|
limcresi |
|- ( ( RR _D F ) limCC x ) C_ ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) limCC x ) |
| 51 |
5
|
reseq1i |
|- ( G |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) |
| 52 |
|
resres |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) |
| 53 |
51 52
|
eqtr2i |
|- ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) = ( G |` ( -oo (,) x ) ) |
| 54 |
53
|
oveq1i |
|- ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) limCC x ) = ( ( G |` ( -oo (,) x ) ) limCC x ) |
| 55 |
50 54
|
sseqtri |
|- ( ( RR _D F ) limCC x ) C_ ( ( G |` ( -oo (,) x ) ) limCC x ) |
| 56 |
55 43
|
sselid |
|- ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( G |` ( -oo (,) x ) ) limCC x ) ) |
| 57 |
56
|
ne0d |
|- ( ( ph /\ x e. RR ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 58 |
49 57
|
sylan2 |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 59 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 60 |
|
ax-resscn |
|- RR C_ CC |
| 61 |
60
|
a1i |
|- ( ph -> RR C_ CC ) |
| 62 |
1 61
|
fssd |
|- ( ph -> F : RR --> CC ) |
| 63 |
|
ssid |
|- RR C_ RR |
| 64 |
63
|
a1i |
|- ( ph -> RR C_ RR ) |
| 65 |
|
dvcn |
|- ( ( ( RR C_ CC /\ F : RR --> CC /\ RR C_ RR ) /\ dom ( RR _D F ) = RR ) -> F e. ( RR -cn-> CC ) ) |
| 66 |
61 62 64 13 65
|
syl31anc |
|- ( ph -> F e. ( RR -cn-> CC ) ) |
| 67 |
|
cncfcdm |
|- ( ( RR C_ CC /\ F e. ( RR -cn-> CC ) ) -> ( F e. ( RR -cn-> RR ) <-> F : RR --> RR ) ) |
| 68 |
61 66 67
|
syl2anc |
|- ( ph -> ( F e. ( RR -cn-> RR ) <-> F : RR --> RR ) ) |
| 69 |
1 68
|
mpbird |
|- ( ph -> F e. ( RR -cn-> RR ) ) |
| 70 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 71 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 72 |
70 71 71
|
cncfcn |
|- ( ( RR C_ CC /\ RR C_ CC ) -> ( RR -cn-> RR ) = ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
| 73 |
61 61 72
|
syl2anc |
|- ( ph -> ( RR -cn-> RR ) = ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
| 74 |
69 73
|
eleqtrd |
|- ( ph -> F e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
| 75 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 76 |
75
|
cncnpi |
|- ( ( F e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) /\ X e. RR ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( topGen ` ran (,) ) ) ` X ) ) |
| 77 |
74 6 76
|
syl2anc |
|- ( ph -> F e. ( ( ( topGen ` ran (,) ) CnP ( topGen ` ran (,) ) ) ` X ) ) |
| 78 |
1 2 3 5 22 27 46 58 59 77 7 8
|
fouriercnp |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( F ` X ) ) |