Metamath Proof Explorer


Theorem fouriercn

Description: If the derivative of F is continuous, then the Fourier series for F converges to F everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function (see fourierd for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fouriercn.f
|- ( ph -> F : RR --> RR )
fouriercn.t
|- T = ( 2 x. _pi )
fouriercn.per
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )
fouriercn.dv
|- ( ph -> ( RR _D F ) e. ( RR -cn-> CC ) )
fouriercn.g
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
fouriercn.x
|- ( ph -> X e. RR )
fouriercn.a
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) )
fouriercn.b
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) )
Assertion fouriercn
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( F ` X ) )

Proof

Step Hyp Ref Expression
1 fouriercn.f
 |-  ( ph -> F : RR --> RR )
2 fouriercn.t
 |-  T = ( 2 x. _pi )
3 fouriercn.per
 |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )
4 fouriercn.dv
 |-  ( ph -> ( RR _D F ) e. ( RR -cn-> CC ) )
5 fouriercn.g
 |-  G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
6 fouriercn.x
 |-  ( ph -> X e. RR )
7 fouriercn.a
 |-  A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) )
8 fouriercn.b
 |-  B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) )
9 5 dmeqi
 |-  dom G = dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
10 ioossre
 |-  ( -u _pi (,) _pi ) C_ RR
11 cncff
 |-  ( ( RR _D F ) e. ( RR -cn-> CC ) -> ( RR _D F ) : RR --> CC )
12 fdm
 |-  ( ( RR _D F ) : RR --> CC -> dom ( RR _D F ) = RR )
13 4 11 12 3syl
 |-  ( ph -> dom ( RR _D F ) = RR )
14 10 13 sseqtrrid
 |-  ( ph -> ( -u _pi (,) _pi ) C_ dom ( RR _D F ) )
15 ssdmres
 |-  ( ( -u _pi (,) _pi ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) )
16 14 15 sylib
 |-  ( ph -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) )
17 9 16 eqtrid
 |-  ( ph -> dom G = ( -u _pi (,) _pi ) )
18 17 difeq2d
 |-  ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) = ( ( -u _pi (,) _pi ) \ ( -u _pi (,) _pi ) ) )
19 difid
 |-  ( ( -u _pi (,) _pi ) \ ( -u _pi (,) _pi ) ) = (/)
20 18 19 eqtrdi
 |-  ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) = (/) )
21 0fin
 |-  (/) e. Fin
22 20 21 eqeltrdi
 |-  ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin )
23 rescncf
 |-  ( ( -u _pi (,) _pi ) C_ RR -> ( ( RR _D F ) e. ( RR -cn-> CC ) -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) )
24 10 4 23 mpsyl
 |-  ( ph -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) )
25 5 a1i
 |-  ( ph -> G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
26 17 oveq1d
 |-  ( ph -> ( dom G -cn-> CC ) = ( ( -u _pi (,) _pi ) -cn-> CC ) )
27 24 25 26 3eltr4d
 |-  ( ph -> G e. ( dom G -cn-> CC ) )
28 pire
 |-  _pi e. RR
29 28 renegcli
 |-  -u _pi e. RR
30 28 rexri
 |-  _pi e. RR*
31 icossre
 |-  ( ( -u _pi e. RR /\ _pi e. RR* ) -> ( -u _pi [,) _pi ) C_ RR )
32 29 30 31 mp2an
 |-  ( -u _pi [,) _pi ) C_ RR
33 eldifi
 |-  ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> x e. ( -u _pi [,) _pi ) )
34 32 33 sselid
 |-  ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> x e. RR )
35 limcresi
 |-  ( ( RR _D F ) limCC x ) C_ ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) limCC x )
36 5 reseq1i
 |-  ( G |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) )
37 resres
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) )
38 36 37 eqtr2i
 |-  ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) = ( G |` ( x (,) +oo ) )
39 38 oveq1i
 |-  ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) limCC x ) = ( ( G |` ( x (,) +oo ) ) limCC x )
40 35 39 sseqtri
 |-  ( ( RR _D F ) limCC x ) C_ ( ( G |` ( x (,) +oo ) ) limCC x )
41 4 adantr
 |-  ( ( ph /\ x e. RR ) -> ( RR _D F ) e. ( RR -cn-> CC ) )
42 simpr
 |-  ( ( ph /\ x e. RR ) -> x e. RR )
43 41 42 cnlimci
 |-  ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( RR _D F ) limCC x ) )
44 40 43 sselid
 |-  ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( G |` ( x (,) +oo ) ) limCC x ) )
45 44 ne0d
 |-  ( ( ph /\ x e. RR ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) )
46 34 45 sylan2
 |-  ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) )
47 negpitopissre
 |-  ( -u _pi (,] _pi ) C_ RR
48 eldifi
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> x e. ( -u _pi (,] _pi ) )
49 47 48 sselid
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> x e. RR )
50 limcresi
 |-  ( ( RR _D F ) limCC x ) C_ ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) limCC x )
51 5 reseq1i
 |-  ( G |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) )
52 resres
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) )
53 51 52 eqtr2i
 |-  ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) = ( G |` ( -oo (,) x ) )
54 53 oveq1i
 |-  ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) limCC x ) = ( ( G |` ( -oo (,) x ) ) limCC x )
55 50 54 sseqtri
 |-  ( ( RR _D F ) limCC x ) C_ ( ( G |` ( -oo (,) x ) ) limCC x )
56 55 43 sselid
 |-  ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( G |` ( -oo (,) x ) ) limCC x ) )
57 56 ne0d
 |-  ( ( ph /\ x e. RR ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) )
58 49 57 sylan2
 |-  ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) )
59 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
60 ax-resscn
 |-  RR C_ CC
61 60 a1i
 |-  ( ph -> RR C_ CC )
62 1 61 fssd
 |-  ( ph -> F : RR --> CC )
63 ssid
 |-  RR C_ RR
64 63 a1i
 |-  ( ph -> RR C_ RR )
65 dvcn
 |-  ( ( ( RR C_ CC /\ F : RR --> CC /\ RR C_ RR ) /\ dom ( RR _D F ) = RR ) -> F e. ( RR -cn-> CC ) )
66 61 62 64 13 65 syl31anc
 |-  ( ph -> F e. ( RR -cn-> CC ) )
67 cncffvrn
 |-  ( ( RR C_ CC /\ F e. ( RR -cn-> CC ) ) -> ( F e. ( RR -cn-> RR ) <-> F : RR --> RR ) )
68 61 66 67 syl2anc
 |-  ( ph -> ( F e. ( RR -cn-> RR ) <-> F : RR --> RR ) )
69 1 68 mpbird
 |-  ( ph -> F e. ( RR -cn-> RR ) )
70 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
71 70 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
72 70 71 71 cncfcn
 |-  ( ( RR C_ CC /\ RR C_ CC ) -> ( RR -cn-> RR ) = ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) )
73 61 61 72 syl2anc
 |-  ( ph -> ( RR -cn-> RR ) = ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) )
74 69 73 eleqtrd
 |-  ( ph -> F e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) )
75 uniretop
 |-  RR = U. ( topGen ` ran (,) )
76 75 cncnpi
 |-  ( ( F e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) /\ X e. RR ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( topGen ` ran (,) ) ) ` X ) )
77 74 6 76 syl2anc
 |-  ( ph -> F e. ( ( ( topGen ` ran (,) ) CnP ( topGen ` ran (,) ) ) ` X ) )
78 1 2 3 5 22 27 46 58 59 77 7 8 fouriercnp
 |-  ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( F ` X ) )