| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmphl.y |
|- Y = ( R freeLMod I ) |
| 2 |
|
frlmphl.b |
|- B = ( Base ` R ) |
| 3 |
|
frlmphl.t |
|- .x. = ( .r ` R ) |
| 4 |
|
eqid |
|- ( R freeLMod I ) = ( R freeLMod I ) |
| 5 |
|
eqid |
|- ( Base ` ( R freeLMod I ) ) = ( Base ` ( R freeLMod I ) ) |
| 6 |
4 5
|
frlmpws |
|- ( ( R e. V /\ I e. W ) -> ( R freeLMod I ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
| 7 |
6
|
ancoms |
|- ( ( I e. W /\ R e. V ) -> ( R freeLMod I ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
| 8 |
2
|
ressid |
|- ( R e. V -> ( R |`s B ) = R ) |
| 9 |
|
eqidd |
|- ( R e. V -> ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` B ) ) |
| 10 |
2
|
eqimssi |
|- B C_ ( Base ` R ) |
| 11 |
10
|
a1i |
|- ( R e. V -> B C_ ( Base ` R ) ) |
| 12 |
9 11
|
srasca |
|- ( R e. V -> ( R |`s B ) = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) ) |
| 13 |
8 12
|
eqtr3d |
|- ( R e. V -> R = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) ) |
| 14 |
13
|
oveq1d |
|- ( R e. V -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 15 |
14
|
adantl |
|- ( ( I e. W /\ R e. V ) -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 16 |
|
fvex |
|- ( ( subringAlg ` R ) ` B ) e. _V |
| 17 |
|
rlmval |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
| 18 |
2
|
fveq2i |
|- ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
| 19 |
17 18
|
eqtr4i |
|- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` B ) |
| 20 |
19
|
oveq1i |
|- ( ( ringLMod ` R ) ^s I ) = ( ( ( subringAlg ` R ) ` B ) ^s I ) |
| 21 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` R ) ` B ) ) = ( Scalar ` ( ( subringAlg ` R ) ` B ) ) |
| 22 |
20 21
|
pwsval |
|- ( ( ( ( subringAlg ` R ) ` B ) e. _V /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 23 |
16 22
|
mpan |
|- ( I e. W -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 24 |
23
|
adantr |
|- ( ( I e. W /\ R e. V ) -> ( ( ringLMod ` R ) ^s I ) = ( ( Scalar ` ( ( subringAlg ` R ) ` B ) ) Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 25 |
15 24
|
eqtr4d |
|- ( ( I e. W /\ R e. V ) -> ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( ( ringLMod ` R ) ^s I ) ) |
| 26 |
1
|
fveq2i |
|- ( Base ` Y ) = ( Base ` ( R freeLMod I ) ) |
| 27 |
26
|
a1i |
|- ( ( I e. W /\ R e. V ) -> ( Base ` Y ) = ( Base ` ( R freeLMod I ) ) ) |
| 28 |
25 27
|
oveq12d |
|- ( ( I e. W /\ R e. V ) -> ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` ( R freeLMod I ) ) ) ) |
| 29 |
7 28
|
eqtr4d |
|- ( ( I e. W /\ R e. V ) -> ( R freeLMod I ) = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
| 30 |
1 29
|
eqtrid |
|- ( ( I e. W /\ R e. V ) -> Y = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
| 31 |
30
|
fveq2d |
|- ( ( I e. W /\ R e. V ) -> ( .i ` Y ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) ) |
| 32 |
|
fvex |
|- ( Base ` Y ) e. _V |
| 33 |
|
eqid |
|- ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) = ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) |
| 34 |
|
eqid |
|- ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 35 |
33 34
|
ressip |
|- ( ( Base ` Y ) e. _V -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) ) |
| 36 |
32 35
|
ax-mp |
|- ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) |
| 37 |
|
eqid |
|- ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) = ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |
| 38 |
|
simpr |
|- ( ( I e. W /\ R e. V ) -> R e. V ) |
| 39 |
|
snex |
|- { ( ( subringAlg ` R ) ` B ) } e. _V |
| 40 |
|
xpexg |
|- ( ( I e. W /\ { ( ( subringAlg ` R ) ` B ) } e. _V ) -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
| 41 |
39 40
|
mpan2 |
|- ( I e. W -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
| 42 |
41
|
adantr |
|- ( ( I e. W /\ R e. V ) -> ( I X. { ( ( subringAlg ` R ) ` B ) } ) e. _V ) |
| 43 |
|
eqid |
|- ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |
| 44 |
16
|
snnz |
|- { ( ( subringAlg ` R ) ` B ) } =/= (/) |
| 45 |
|
dmxp |
|- ( { ( ( subringAlg ` R ) ` B ) } =/= (/) -> dom ( I X. { ( ( subringAlg ` R ) ` B ) } ) = I ) |
| 46 |
44 45
|
mp1i |
|- ( ( I e. W /\ R e. V ) -> dom ( I X. { ( ( subringAlg ` R ) ` B ) } ) = I ) |
| 47 |
37 38 42 43 46 34
|
prdsip |
|- ( ( I e. W /\ R e. V ) -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( f e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) , g e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) ) ) |
| 48 |
37 38 42 43 46
|
prdsbas |
|- ( ( I e. W /\ R e. V ) -> ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ) |
| 49 |
|
eqidd |
|- ( x e. I -> ( ( subringAlg ` R ) ` B ) = ( ( subringAlg ` R ) ` B ) ) |
| 50 |
10
|
a1i |
|- ( x e. I -> B C_ ( Base ` R ) ) |
| 51 |
49 50
|
srabase |
|- ( x e. I -> ( Base ` R ) = ( Base ` ( ( subringAlg ` R ) ` B ) ) ) |
| 52 |
2
|
a1i |
|- ( x e. I -> B = ( Base ` R ) ) |
| 53 |
16
|
fvconst2 |
|- ( x e. I -> ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) = ( ( subringAlg ` R ) ` B ) ) |
| 54 |
53
|
fveq2d |
|- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = ( Base ` ( ( subringAlg ` R ) ` B ) ) ) |
| 55 |
51 52 54
|
3eqtr4rd |
|- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = B ) |
| 56 |
55
|
adantl |
|- ( ( ( I e. W /\ R e. V ) /\ x e. I ) -> ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = B ) |
| 57 |
56
|
ixpeq2dva |
|- ( ( I e. W /\ R e. V ) -> X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = X_ x e. I B ) |
| 58 |
2
|
fvexi |
|- B e. _V |
| 59 |
|
ixpconstg |
|- ( ( I e. W /\ B e. _V ) -> X_ x e. I B = ( B ^m I ) ) |
| 60 |
58 59
|
mpan2 |
|- ( I e. W -> X_ x e. I B = ( B ^m I ) ) |
| 61 |
60
|
adantr |
|- ( ( I e. W /\ R e. V ) -> X_ x e. I B = ( B ^m I ) ) |
| 62 |
48 57 61
|
3eqtrd |
|- ( ( I e. W /\ R e. V ) -> ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( B ^m I ) ) |
| 63 |
53 50
|
sraip |
|- ( x e. I -> ( .r ` R ) = ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ) |
| 64 |
3 63
|
eqtr2id |
|- ( x e. I -> ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) = .x. ) |
| 65 |
64
|
oveqd |
|- ( x e. I -> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) = ( ( f ` x ) .x. ( g ` x ) ) ) |
| 66 |
65
|
mpteq2ia |
|- ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) |
| 67 |
66
|
oveq2i |
|- ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) = ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) |
| 68 |
67
|
a1i |
|- ( ( I e. W /\ R e. V ) -> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) = ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) |
| 69 |
62 62 68
|
mpoeq123dv |
|- ( ( I e. W /\ R e. V ) -> ( f e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) , g e. ( Base ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` R ) ` B ) } ) ` x ) ) ( g ` x ) ) ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
| 70 |
47 69
|
eqtrd |
|- ( ( I e. W /\ R e. V ) -> ( .i ` ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
| 71 |
36 70
|
eqtr3id |
|- ( ( I e. W /\ R e. V ) -> ( .i ` ( ( R Xs_ ( I X. { ( ( subringAlg ` R ) ` B ) } ) ) |`s ( Base ` Y ) ) ) = ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) ) |
| 72 |
31 71
|
eqtr2d |
|- ( ( I e. W /\ R e. V ) -> ( f e. ( B ^m I ) , g e. ( B ^m I ) |-> ( R gsum ( x e. I |-> ( ( f ` x ) .x. ( g ` x ) ) ) ) ) = ( .i ` Y ) ) |