| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgedgiov.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpgedgiov.i |
|- I = ( 0 ..^ N ) |
| 3 |
|
gpgedgiov.g |
|- G = ( N gPetersenGr K ) |
| 4 |
|
gpgedgiov.e |
|- E = ( Edg ` G ) |
| 5 |
|
simpll |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 1 , Y >. } e. E ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 6 |
|
c0ex |
|- 0 e. _V |
| 7 |
6
|
a1i |
|- ( Y e. I -> 0 e. _V ) |
| 8 |
7
|
anim1i |
|- ( ( Y e. I /\ X e. I ) -> ( 0 e. _V /\ X e. I ) ) |
| 9 |
8
|
ancoms |
|- ( ( X e. I /\ Y e. I ) -> ( 0 e. _V /\ X e. I ) ) |
| 10 |
|
op1stg |
|- ( ( 0 e. _V /\ X e. I ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 11 |
9 10
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 1 , Y >. } e. E ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 13 |
|
simpr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 1 , Y >. } e. E ) -> { <. 0 , X >. , <. 1 , Y >. } e. E ) |
| 14 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 15 |
1 3 14 4
|
gpgvtxedg0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` <. 0 , X >. ) = 0 /\ { <. 0 , X >. , <. 1 , Y >. } e. E ) -> ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) |
| 16 |
5 12 13 15
|
syl3anc |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 1 , Y >. } e. E ) -> ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) |
| 17 |
16
|
ex |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , X >. , <. 1 , Y >. } e. E -> ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) ) |
| 18 |
|
ovex |
|- ( ( X + 1 ) mod N ) e. _V |
| 19 |
6 18
|
pm3.2i |
|- ( 0 e. _V /\ ( ( X + 1 ) mod N ) e. _V ) |
| 20 |
|
opthg2 |
|- ( ( 0 e. _V /\ ( ( X + 1 ) mod N ) e. _V ) -> ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. <-> ( 1 = 0 /\ Y = ( ( X + 1 ) mod N ) ) ) ) |
| 21 |
19 20
|
mp1i |
|- ( ( X e. I /\ Y e. I ) -> ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. <-> ( 1 = 0 /\ Y = ( ( X + 1 ) mod N ) ) ) ) |
| 22 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 23 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = ( ( X + 1 ) mod N ) -> X = Y ) ) ) |
| 24 |
22 23
|
mpi |
|- ( 1 = 0 -> ( Y = ( ( X + 1 ) mod N ) -> X = Y ) ) |
| 25 |
24
|
imp |
|- ( ( 1 = 0 /\ Y = ( ( X + 1 ) mod N ) ) -> X = Y ) |
| 26 |
21 25
|
biimtrdi |
|- ( ( X e. I /\ Y e. I ) -> ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) |
| 27 |
|
1ex |
|- 1 e. _V |
| 28 |
27
|
a1i |
|- ( Y e. I -> 1 e. _V ) |
| 29 |
28
|
anim1i |
|- ( ( Y e. I /\ X e. I ) -> ( 1 e. _V /\ X e. I ) ) |
| 30 |
29
|
ancoms |
|- ( ( X e. I /\ Y e. I ) -> ( 1 e. _V /\ X e. I ) ) |
| 31 |
|
opthg2 |
|- ( ( 1 e. _V /\ X e. I ) -> ( <. 1 , Y >. = <. 1 , X >. <-> ( 1 = 1 /\ Y = X ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( <. 1 , Y >. = <. 1 , X >. <-> ( 1 = 1 /\ Y = X ) ) ) |
| 33 |
|
simpr |
|- ( ( 1 = 1 /\ Y = X ) -> Y = X ) |
| 34 |
33
|
eqcomd |
|- ( ( 1 = 1 /\ Y = X ) -> X = Y ) |
| 35 |
32 34
|
biimtrdi |
|- ( ( X e. I /\ Y e. I ) -> ( <. 1 , Y >. = <. 1 , X >. -> X = Y ) ) |
| 36 |
|
ovex |
|- ( ( X - 1 ) mod N ) e. _V |
| 37 |
6 36
|
pm3.2i |
|- ( 0 e. _V /\ ( ( X - 1 ) mod N ) e. _V ) |
| 38 |
|
opthg2 |
|- ( ( 0 e. _V /\ ( ( X - 1 ) mod N ) e. _V ) -> ( <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. <-> ( 1 = 0 /\ Y = ( ( X - 1 ) mod N ) ) ) ) |
| 39 |
37 38
|
mp1i |
|- ( ( X e. I /\ Y e. I ) -> ( <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. <-> ( 1 = 0 /\ Y = ( ( X - 1 ) mod N ) ) ) ) |
| 40 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( Y = ( ( X - 1 ) mod N ) -> X = Y ) ) ) |
| 41 |
22 40
|
mpi |
|- ( 1 = 0 -> ( Y = ( ( X - 1 ) mod N ) -> X = Y ) ) |
| 42 |
41
|
imp |
|- ( ( 1 = 0 /\ Y = ( ( X - 1 ) mod N ) ) -> X = Y ) |
| 43 |
39 42
|
biimtrdi |
|- ( ( X e. I /\ Y e. I ) -> ( <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. -> X = Y ) ) |
| 44 |
26 35 43
|
3jaod |
|- ( ( X e. I /\ Y e. I ) -> ( ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , X >. \/ <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) |
| 45 |
|
op2ndg |
|- ( ( 0 e. _V /\ X e. I ) -> ( 2nd ` <. 0 , X >. ) = X ) |
| 46 |
9 45
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( 2nd ` <. 0 , X >. ) = X ) |
| 47 |
|
oveq1 |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( 2nd ` <. 0 , X >. ) + 1 ) = ( X + 1 ) ) |
| 48 |
47
|
oveq1d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) = ( ( X + 1 ) mod N ) ) |
| 49 |
48
|
opeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. ) |
| 50 |
49
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. <-> <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. ) ) |
| 51 |
|
opeq2 |
|- ( ( 2nd ` <. 0 , X >. ) = X -> <. 1 , ( 2nd ` <. 0 , X >. ) >. = <. 1 , X >. ) |
| 52 |
51
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. <-> <. 1 , Y >. = <. 1 , X >. ) ) |
| 53 |
|
oveq1 |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( 2nd ` <. 0 , X >. ) - 1 ) = ( X - 1 ) ) |
| 54 |
53
|
oveq1d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) = ( ( X - 1 ) mod N ) ) |
| 55 |
54
|
opeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) |
| 56 |
55
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. <-> <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. ) ) |
| 57 |
50 52 56
|
3orbi123d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) <-> ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , X >. \/ <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. ) ) ) |
| 58 |
57
|
imbi1d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) <-> ( ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , X >. \/ <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 59 |
46 58
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( ( ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) <-> ( ( <. 1 , Y >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , X >. \/ <. 1 , Y >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 60 |
44 59
|
mpbird |
|- ( ( X e. I /\ Y e. I ) -> ( ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) ) |
| 61 |
60
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 1 , Y >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 1 , Y >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) ) |
| 62 |
17 61
|
syld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , X >. , <. 1 , Y >. } e. E -> X = Y ) ) |
| 63 |
|
simpr |
|- ( ( X e. I /\ Y e. I ) -> Y e. I ) |
| 64 |
63
|
ad2antlr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> Y e. I ) |
| 65 |
|
opeq2 |
|- ( x = Y -> <. 0 , x >. = <. 0 , Y >. ) |
| 66 |
|
oveq1 |
|- ( x = Y -> ( x + 1 ) = ( Y + 1 ) ) |
| 67 |
66
|
oveq1d |
|- ( x = Y -> ( ( x + 1 ) mod N ) = ( ( Y + 1 ) mod N ) ) |
| 68 |
67
|
opeq2d |
|- ( x = Y -> <. 0 , ( ( x + 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) |
| 69 |
65 68
|
preq12d |
|- ( x = Y -> { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } ) |
| 70 |
69
|
eqeq2d |
|- ( x = Y -> ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } <-> { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } ) ) |
| 71 |
|
opeq2 |
|- ( x = Y -> <. 1 , x >. = <. 1 , Y >. ) |
| 72 |
65 71
|
preq12d |
|- ( x = Y -> { <. 0 , x >. , <. 1 , x >. } = { <. 0 , Y >. , <. 1 , Y >. } ) |
| 73 |
72
|
eqeq2d |
|- ( x = Y -> ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 1 , x >. } <-> { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 1 , Y >. } ) ) |
| 74 |
|
oveq1 |
|- ( x = Y -> ( x + K ) = ( Y + K ) ) |
| 75 |
74
|
oveq1d |
|- ( x = Y -> ( ( x + K ) mod N ) = ( ( Y + K ) mod N ) ) |
| 76 |
75
|
opeq2d |
|- ( x = Y -> <. 1 , ( ( x + K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. ) |
| 77 |
71 76
|
preq12d |
|- ( x = Y -> { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) |
| 78 |
77
|
eqeq2d |
|- ( x = Y -> ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } <-> { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) ) |
| 79 |
70 73 78
|
3orbi123d |
|- ( x = Y -> ( ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 1 , Y >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) ) ) |
| 80 |
79
|
adantl |
|- ( ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) /\ x = Y ) -> ( ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) <-> ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 1 , Y >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) ) ) |
| 81 |
|
eqidd |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 1 , Y >. } ) |
| 82 |
81
|
3mix2d |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 1 , Y >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) ) |
| 83 |
64 80 82
|
rspcedvd |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> E. x e. I ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) |
| 84 |
2 1 3 4
|
gpgedgel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( { <. 0 , Y >. , <. 1 , Y >. } e. E <-> E. x e. I ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 85 |
84
|
ad2antrr |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> ( { <. 0 , Y >. , <. 1 , Y >. } e. E <-> E. x e. I ( { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 0 , x >. , <. 1 , x >. } \/ { <. 0 , Y >. , <. 1 , Y >. } = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) ) ) |
| 86 |
83 85
|
mpbird |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> { <. 0 , Y >. , <. 1 , Y >. } e. E ) |
| 87 |
|
opeq2 |
|- ( X = Y -> <. 0 , X >. = <. 0 , Y >. ) |
| 88 |
87
|
preq1d |
|- ( X = Y -> { <. 0 , X >. , <. 1 , Y >. } = { <. 0 , Y >. , <. 1 , Y >. } ) |
| 89 |
88
|
eleq1d |
|- ( X = Y -> ( { <. 0 , X >. , <. 1 , Y >. } e. E <-> { <. 0 , Y >. , <. 1 , Y >. } e. E ) ) |
| 90 |
89
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> ( { <. 0 , X >. , <. 1 , Y >. } e. E <-> { <. 0 , Y >. , <. 1 , Y >. } e. E ) ) |
| 91 |
86 90
|
mpbird |
|- ( ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ X = Y ) -> { <. 0 , X >. , <. 1 , Y >. } e. E ) |
| 92 |
91
|
ex |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( X = Y -> { <. 0 , X >. , <. 1 , Y >. } e. E ) ) |
| 93 |
62 92
|
impbid |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , X >. , <. 1 , Y >. } e. E <-> X = Y ) ) |