| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgedgiov.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpgedgiov.i |
|- I = ( 0 ..^ N ) |
| 3 |
|
gpgedgiov.g |
|- G = ( N gPetersenGr K ) |
| 4 |
|
gpgedgiov.e |
|- E = ( Edg ` G ) |
| 5 |
|
prcom |
|- { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } = { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } |
| 6 |
5
|
eleq1i |
|- ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E <-> { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) |
| 7 |
|
uzuzle35 |
|- ( N e. ( ZZ>= ` 5 ) -> N e. ( ZZ>= ` 3 ) ) |
| 8 |
7
|
anim1i |
|- ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 9 |
8
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 10 |
9
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 11 |
|
c0ex |
|- 0 e. _V |
| 12 |
11
|
a1i |
|- ( Y e. I -> 0 e. _V ) |
| 13 |
12
|
anim1i |
|- ( ( Y e. I /\ X e. I ) -> ( 0 e. _V /\ X e. I ) ) |
| 14 |
13
|
ancoms |
|- ( ( X e. I /\ Y e. I ) -> ( 0 e. _V /\ X e. I ) ) |
| 15 |
|
op1stg |
|- ( ( 0 e. _V /\ X e. I ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 16 |
14 15
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 17 |
16
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 18 |
17
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 19 |
|
simpr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) -> { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) |
| 20 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 21 |
1 3 20 4
|
gpgvtxedg0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` <. 0 , X >. ) = 0 /\ { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) |
| 22 |
10 18 19 21
|
syl3anc |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) |
| 23 |
22
|
ex |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , X >. , <. 0 , ( ( Y - 1 ) mod N ) >. } e. E -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) ) |
| 24 |
6 23
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) ) |
| 25 |
9
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 26 |
17
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) -> ( 1st ` <. 0 , X >. ) = 0 ) |
| 27 |
|
simpr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) -> { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) |
| 28 |
1 3 20 4
|
gpgvtxedg0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` <. 0 , X >. ) = 0 /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) |
| 29 |
25 26 27 28
|
syl3anc |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) |
| 30 |
29
|
ex |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) ) ) |
| 31 |
|
ovex |
|- ( ( Y + 1 ) mod N ) e. _V |
| 32 |
11 31
|
opth |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. <-> ( 0 = 0 /\ ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) ) ) |
| 33 |
7
|
adantr |
|- ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) -> N e. ( ZZ>= ` 3 ) ) |
| 34 |
33
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 35 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( X e. I /\ Y e. I ) ) |
| 36 |
35
|
ancomd |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( Y e. I /\ X e. I ) ) |
| 37 |
|
1zzd |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> 1 e. ZZ ) |
| 38 |
2
|
modaddid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( Y e. I /\ X e. I ) /\ 1 e. ZZ ) -> ( ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) <-> Y = X ) ) |
| 39 |
34 36 37 38
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) <-> Y = X ) ) |
| 40 |
39
|
biimpa |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) ) -> Y = X ) |
| 41 |
40
|
eqcomd |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) ) -> X = Y ) |
| 42 |
41
|
ex |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) -> X = Y ) ) |
| 43 |
42
|
adantld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( 0 = 0 /\ ( ( Y + 1 ) mod N ) = ( ( X + 1 ) mod N ) ) -> X = Y ) ) |
| 44 |
32 43
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) |
| 45 |
44
|
imp |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. ) -> X = Y ) |
| 46 |
45
|
a1d |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) |
| 47 |
46
|
ex |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 48 |
11 31
|
opth |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. <-> ( 0 = 1 /\ ( ( Y + 1 ) mod N ) = X ) ) |
| 49 |
|
0ne1 |
|- 0 =/= 1 |
| 50 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> ( ( ( Y + 1 ) mod N ) = X -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) ) |
| 51 |
49 50
|
mpi |
|- ( 0 = 1 -> ( ( ( Y + 1 ) mod N ) = X -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) |
| 52 |
51
|
imp |
|- ( ( 0 = 1 /\ ( ( Y + 1 ) mod N ) = X ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) |
| 53 |
52
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( 0 = 1 /\ ( ( Y + 1 ) mod N ) = X ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) |
| 54 |
48 53
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) |
| 55 |
54
|
imp |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) |
| 56 |
|
eqeq2 |
|- ( <. 1 , X >. = <. 0 , ( ( Y + 1 ) mod N ) >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) ) |
| 57 |
56
|
eqcoms |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) ) |
| 58 |
57
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) ) |
| 59 |
|
ovex |
|- ( ( Y - 1 ) mod N ) e. _V |
| 60 |
11 59
|
opth |
|- ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. <-> ( 0 = 0 /\ ( ( Y - 1 ) mod N ) = ( ( Y + 1 ) mod N ) ) ) |
| 61 |
|
simpr |
|- ( ( X e. I /\ Y e. I ) -> Y e. I ) |
| 62 |
2
|
modm1nep1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ Y e. I ) -> ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) ) |
| 63 |
33 61 62
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) ) |
| 64 |
|
eqneqall |
|- ( ( ( Y - 1 ) mod N ) = ( ( Y + 1 ) mod N ) -> ( ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) -> X = Y ) ) |
| 65 |
64
|
com12 |
|- ( ( ( Y - 1 ) mod N ) =/= ( ( Y + 1 ) mod N ) -> ( ( ( Y - 1 ) mod N ) = ( ( Y + 1 ) mod N ) -> X = Y ) ) |
| 66 |
63 65
|
syl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y - 1 ) mod N ) = ( ( Y + 1 ) mod N ) -> X = Y ) ) |
| 67 |
66
|
adantld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( 0 = 0 /\ ( ( Y - 1 ) mod N ) = ( ( Y + 1 ) mod N ) ) -> X = Y ) ) |
| 68 |
60 67
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. -> X = Y ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. -> X = Y ) ) |
| 70 |
58 69
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. -> X = Y ) ) |
| 71 |
49
|
orci |
|- ( 0 =/= 1 \/ ( ( Y + 1 ) mod N ) =/= X ) |
| 72 |
11 31
|
opthne |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. =/= <. 1 , X >. <-> ( 0 =/= 1 \/ ( ( Y + 1 ) mod N ) =/= X ) ) |
| 73 |
71 72
|
mpbir |
|- <. 0 , ( ( Y + 1 ) mod N ) >. =/= <. 1 , X >. |
| 74 |
73
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> <. 0 , ( ( Y + 1 ) mod N ) >. =/= <. 1 , X >. ) |
| 75 |
|
eqneqall |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. -> ( <. 0 , ( ( Y + 1 ) mod N ) >. =/= <. 1 , X >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> X = Y ) ) ) |
| 76 |
75
|
com12 |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. =/= <. 1 , X >. -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> X = Y ) ) ) |
| 77 |
74 76
|
syl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> X = Y ) ) ) |
| 78 |
77
|
imp |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> X = Y ) ) |
| 79 |
55 70 78
|
3jaod |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) |
| 80 |
79
|
ex |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 81 |
11 31
|
opth |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. <-> ( 0 = 0 /\ ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) ) ) |
| 82 |
11 59
|
opth |
|- ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. <-> ( 0 = 0 /\ ( ( Y - 1 ) mod N ) = ( ( X + 1 ) mod N ) ) ) |
| 83 |
|
simpll |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> N e. ( ZZ>= ` 5 ) ) |
| 84 |
|
simprl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> X e. I ) |
| 85 |
|
simprr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> Y e. I ) |
| 86 |
2
|
modm1p1ne |
|- ( ( N e. ( ZZ>= ` 5 ) /\ X e. I /\ Y e. I ) -> ( ( ( Y - 1 ) mod N ) = ( ( X + 1 ) mod N ) -> ( ( Y + 1 ) mod N ) =/= ( ( X - 1 ) mod N ) ) ) |
| 87 |
83 84 85 86
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y - 1 ) mod N ) = ( ( X + 1 ) mod N ) -> ( ( Y + 1 ) mod N ) =/= ( ( X - 1 ) mod N ) ) ) |
| 88 |
|
eqneqall |
|- ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> ( ( ( Y + 1 ) mod N ) =/= ( ( X - 1 ) mod N ) -> X = Y ) ) |
| 89 |
88
|
com12 |
|- ( ( ( Y + 1 ) mod N ) =/= ( ( X - 1 ) mod N ) -> ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> X = Y ) ) |
| 90 |
89
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y + 1 ) mod N ) =/= ( ( X - 1 ) mod N ) -> ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> X = Y ) ) ) |
| 91 |
87 90
|
syld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y - 1 ) mod N ) = ( ( X + 1 ) mod N ) -> ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> X = Y ) ) ) |
| 92 |
91
|
adantld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( 0 = 0 /\ ( ( Y - 1 ) mod N ) = ( ( X + 1 ) mod N ) ) -> ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> X = Y ) ) ) |
| 93 |
82 92
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> X = Y ) ) ) |
| 94 |
93
|
com23 |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) |
| 95 |
94
|
adantld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( 0 = 0 /\ ( ( Y + 1 ) mod N ) = ( ( X - 1 ) mod N ) ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) |
| 96 |
81 95
|
biimtrid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) ) |
| 97 |
96
|
imp |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. -> X = Y ) ) |
| 98 |
49
|
orci |
|- ( 0 =/= 1 \/ ( ( Y - 1 ) mod N ) =/= X ) |
| 99 |
11 59
|
opthne |
|- ( <. 0 , ( ( Y - 1 ) mod N ) >. =/= <. 1 , X >. <-> ( 0 =/= 1 \/ ( ( Y - 1 ) mod N ) =/= X ) ) |
| 100 |
98 99
|
mpbir |
|- <. 0 , ( ( Y - 1 ) mod N ) >. =/= <. 1 , X >. |
| 101 |
|
eqneqall |
|- ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. =/= <. 1 , X >. -> X = Y ) ) |
| 102 |
100 101
|
mpi |
|- ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. -> X = Y ) |
| 103 |
102
|
a1i |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. -> X = Y ) ) |
| 104 |
|
eqeq2 |
|- ( <. 0 , ( ( X - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) ) |
| 105 |
104
|
eqcoms |
|- ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) ) |
| 106 |
105
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) ) |
| 107 |
68
|
adantr |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. -> X = Y ) ) |
| 108 |
106 107
|
sylbid |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> X = Y ) ) |
| 109 |
97 103 108
|
3jaod |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) /\ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) |
| 110 |
109
|
ex |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 111 |
47 80 110
|
3jaod |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 112 |
|
op2ndg |
|- ( ( 0 e. _V /\ X e. I ) -> ( 2nd ` <. 0 , X >. ) = X ) |
| 113 |
11 112
|
mpan |
|- ( X e. I -> ( 2nd ` <. 0 , X >. ) = X ) |
| 114 |
113
|
adantr |
|- ( ( X e. I /\ Y e. I ) -> ( 2nd ` <. 0 , X >. ) = X ) |
| 115 |
114
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( 2nd ` <. 0 , X >. ) = X ) |
| 116 |
|
oveq1 |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( 2nd ` <. 0 , X >. ) + 1 ) = ( X + 1 ) ) |
| 117 |
116
|
oveq1d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) = ( ( X + 1 ) mod N ) ) |
| 118 |
117
|
opeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. ) |
| 119 |
118
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. <-> <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. ) ) |
| 120 |
|
opeq2 |
|- ( ( 2nd ` <. 0 , X >. ) = X -> <. 1 , ( 2nd ` <. 0 , X >. ) >. = <. 1 , X >. ) |
| 121 |
120
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. <-> <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. ) ) |
| 122 |
|
oveq1 |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( 2nd ` <. 0 , X >. ) - 1 ) = ( X - 1 ) ) |
| 123 |
122
|
oveq1d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) = ( ( X - 1 ) mod N ) ) |
| 124 |
123
|
opeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) |
| 125 |
124
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. <-> <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) ) |
| 126 |
119 121 125
|
3orbi123d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) <-> ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) ) ) |
| 127 |
118
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. ) ) |
| 128 |
120
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. ) ) |
| 129 |
124
|
eqeq2d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. <-> <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) ) |
| 130 |
127 128 129
|
3orbi123d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) <-> ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) ) ) |
| 131 |
130
|
imbi1d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) <-> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 132 |
126 131
|
imbi12d |
|- ( ( 2nd ` <. 0 , X >. ) = X -> ( ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) ) <-> ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) ) |
| 133 |
115 132
|
syl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) ) <-> ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , X >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( X - 1 ) mod N ) >. ) -> X = Y ) ) ) ) |
| 134 |
111 133
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y + 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 135 |
30 134
|
syld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> X = Y ) ) ) |
| 136 |
135
|
com23 |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) + 1 ) mod N ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 1 , ( 2nd ` <. 0 , X >. ) >. \/ <. 0 , ( ( Y - 1 ) mod N ) >. = <. 0 , ( ( ( 2nd ` <. 0 , X >. ) - 1 ) mod N ) >. ) -> ( { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E -> X = Y ) ) ) |
| 137 |
24 136
|
syld |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E -> ( { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E -> X = Y ) ) ) |
| 138 |
137
|
impd |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) -> X = Y ) ) |
| 139 |
|
eqid |
|- 0 = 0 |
| 140 |
139
|
orci |
|- ( 0 = 0 \/ 0 = 1 ) |
| 141 |
61 140
|
jctil |
|- ( ( X e. I /\ Y e. I ) -> ( ( 0 = 0 \/ 0 = 1 ) /\ Y e. I ) ) |
| 142 |
141
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( 0 = 0 \/ 0 = 1 ) /\ Y e. I ) ) |
| 143 |
2 1 3 20
|
opgpgvtx |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( <. 0 , Y >. e. ( Vtx ` G ) <-> ( ( 0 = 0 \/ 0 = 1 ) /\ Y e. I ) ) ) |
| 144 |
8 143
|
syl |
|- ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) -> ( <. 0 , Y >. e. ( Vtx ` G ) <-> ( ( 0 = 0 \/ 0 = 1 ) /\ Y e. I ) ) ) |
| 145 |
144
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( <. 0 , Y >. e. ( Vtx ` G ) <-> ( ( 0 = 0 \/ 0 = 1 ) /\ Y e. I ) ) ) |
| 146 |
142 145
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> <. 0 , Y >. e. ( Vtx ` G ) ) |
| 147 |
11
|
a1i |
|- ( X e. I -> 0 e. _V ) |
| 148 |
|
op1stg |
|- ( ( 0 e. _V /\ Y e. I ) -> ( 1st ` <. 0 , Y >. ) = 0 ) |
| 149 |
147 148
|
sylan |
|- ( ( X e. I /\ Y e. I ) -> ( 1st ` <. 0 , Y >. ) = 0 ) |
| 150 |
149
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( 1st ` <. 0 , Y >. ) = 0 ) |
| 151 |
1 3 20 4
|
gpgedgvtx0 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( <. 0 , Y >. e. ( Vtx ` G ) /\ ( 1st ` <. 0 , Y >. ) = 0 ) ) -> ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 1 , ( 2nd ` <. 0 , Y >. ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) ) |
| 152 |
9 146 150 151
|
syl12anc |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 1 , ( 2nd ` <. 0 , Y >. ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) ) |
| 153 |
|
op2ndg |
|- ( ( 0 e. _V /\ Y e. I ) -> ( 2nd ` <. 0 , Y >. ) = Y ) |
| 154 |
11 153
|
mpan |
|- ( Y e. I -> ( 2nd ` <. 0 , Y >. ) = Y ) |
| 155 |
|
oveq1 |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( ( 2nd ` <. 0 , Y >. ) - 1 ) = ( Y - 1 ) ) |
| 156 |
155
|
oveq1d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) = ( ( Y - 1 ) mod N ) ) |
| 157 |
156
|
opeq2d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. = <. 0 , ( ( Y - 1 ) mod N ) >. ) |
| 158 |
157
|
preq2d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } = { <. 0 , Y >. , <. 0 , ( ( Y - 1 ) mod N ) >. } ) |
| 159 |
|
prcom |
|- { <. 0 , Y >. , <. 0 , ( ( Y - 1 ) mod N ) >. } = { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } |
| 160 |
158 159
|
eqtrdi |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } = { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } ) |
| 161 |
160
|
eleq1d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E <-> { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E ) ) |
| 162 |
|
oveq1 |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( ( 2nd ` <. 0 , Y >. ) + 1 ) = ( Y + 1 ) ) |
| 163 |
162
|
oveq1d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) = ( ( Y + 1 ) mod N ) ) |
| 164 |
163
|
opeq2d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. = <. 0 , ( ( Y + 1 ) mod N ) >. ) |
| 165 |
164
|
preq2d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } ) |
| 166 |
165
|
eleq1d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E <-> { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) |
| 167 |
161 166
|
anbi12d |
|- ( ( 2nd ` <. 0 , Y >. ) = Y -> ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E ) <-> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 168 |
154 167
|
syl |
|- ( Y e. I -> ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E ) <-> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 169 |
168
|
biimpcd |
|- ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E ) -> ( Y e. I -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 170 |
169
|
ancoms |
|- ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) -> ( Y e. I -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 171 |
170
|
3adant2 |
|- ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 1 , ( 2nd ` <. 0 , Y >. ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) -> ( Y e. I -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 172 |
171
|
com12 |
|- ( Y e. I -> ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 1 , ( 2nd ` <. 0 , Y >. ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 173 |
172
|
adantl |
|- ( ( X e. I /\ Y e. I ) -> ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 1 , ( 2nd ` <. 0 , Y >. ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 174 |
173
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) + 1 ) mod N ) >. } e. E /\ { <. 0 , Y >. , <. 1 , ( 2nd ` <. 0 , Y >. ) >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( ( 2nd ` <. 0 , Y >. ) - 1 ) mod N ) >. } e. E ) -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 175 |
152 174
|
mpd |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) |
| 176 |
|
opeq2 |
|- ( X = Y -> <. 0 , X >. = <. 0 , Y >. ) |
| 177 |
176
|
preq2d |
|- ( X = Y -> { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } = { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } ) |
| 178 |
177
|
eleq1d |
|- ( X = Y -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E <-> { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E ) ) |
| 179 |
176
|
preq1d |
|- ( X = Y -> { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } = { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } ) |
| 180 |
179
|
eleq1d |
|- ( X = Y -> ( { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E <-> { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) |
| 181 |
178 180
|
anbi12d |
|- ( X = Y -> ( ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) <-> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , Y >. } e. E /\ { <. 0 , Y >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 182 |
175 181
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( X = Y -> ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) ) ) |
| 183 |
138 182
|
impbid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ K e. J ) /\ ( X e. I /\ Y e. I ) ) -> ( ( { <. 0 , ( ( Y - 1 ) mod N ) >. , <. 0 , X >. } e. E /\ { <. 0 , X >. , <. 0 , ( ( Y + 1 ) mod N ) >. } e. E ) <-> X = Y ) ) |