| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgedgiov.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
| 2 |
|
gpgedgiov.i |
|- I = ( 0 ..^ N ) |
| 3 |
|
gpgedgiov.g |
|- G = ( N gPetersenGr K ) |
| 4 |
|
gpgedgiov.e |
|- E = ( Edg ` G ) |
| 5 |
|
prcom |
|- { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } = { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } |
| 6 |
5
|
eleq1i |
|- ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E <-> { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) |
| 7 |
|
uzuzle35 |
|- ( N e. ( ZZ>= ` 5 ) -> N e. ( ZZ>= ` 3 ) ) |
| 8 |
|
simpl |
|- ( ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) -> K e. J ) |
| 9 |
7 8
|
anim12i |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 10 |
9
|
3adant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 11 |
10
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 12 |
|
1ex |
|- 1 e. _V |
| 13 |
12
|
a1i |
|- ( Y e. I -> 1 e. _V ) |
| 14 |
13
|
anim1i |
|- ( ( Y e. I /\ X e. I ) -> ( 1 e. _V /\ X e. I ) ) |
| 15 |
14
|
ancoms |
|- ( ( X e. I /\ Y e. I ) -> ( 1 e. _V /\ X e. I ) ) |
| 16 |
|
op1stg |
|- ( ( 1 e. _V /\ X e. I ) -> ( 1st ` <. 1 , X >. ) = 1 ) |
| 17 |
15 16
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( 1st ` <. 1 , X >. ) = 1 ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( 1st ` <. 1 , X >. ) = 1 ) |
| 19 |
18
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) -> ( 1st ` <. 1 , X >. ) = 1 ) |
| 20 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) -> { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) |
| 21 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 22 |
1 3 21 4
|
gpgvtxedg1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` <. 1 , X >. ) = 1 /\ { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) |
| 23 |
11 19 20 22
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) |
| 24 |
23
|
ex |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , X >. , <. 1 , ( ( Y - K ) mod N ) >. } e. E -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) ) |
| 25 |
6 24
|
biimtrid |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) ) |
| 26 |
10
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) -> ( N e. ( ZZ>= ` 3 ) /\ K e. J ) ) |
| 27 |
18
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) -> ( 1st ` <. 1 , X >. ) = 1 ) |
| 28 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) -> { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) |
| 29 |
1 3 21 4
|
gpgvtxedg1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( 1st ` <. 1 , X >. ) = 1 /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) |
| 30 |
26 27 28 29
|
syl3anc |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) |
| 31 |
30
|
ex |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) ) ) |
| 32 |
|
ovex |
|- ( ( Y + K ) mod N ) e. _V |
| 33 |
12 32
|
opth |
|- ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. <-> ( 1 = 1 /\ ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) ) ) |
| 34 |
7
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 35 |
|
simp2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( X e. I /\ Y e. I ) ) |
| 36 |
35
|
ancomd |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( Y e. I /\ X e. I ) ) |
| 37 |
|
elfzoelz |
|- ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ZZ ) |
| 38 |
37 1
|
eleq2s |
|- ( K e. J -> K e. ZZ ) |
| 39 |
38
|
adantr |
|- ( ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) -> K e. ZZ ) |
| 40 |
39
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> K e. ZZ ) |
| 41 |
2
|
modaddid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( Y e. I /\ X e. I ) /\ K e. ZZ ) -> ( ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) <-> Y = X ) ) |
| 42 |
34 36 40 41
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) <-> Y = X ) ) |
| 43 |
42
|
biimpa |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) ) -> Y = X ) |
| 44 |
43
|
eqcomd |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) ) -> X = Y ) |
| 45 |
44
|
ex |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) -> X = Y ) ) |
| 46 |
45
|
adantld |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( 1 = 1 /\ ( ( Y + K ) mod N ) = ( ( X + K ) mod N ) ) -> X = Y ) ) |
| 47 |
33 46
|
biimtrid |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) |
| 48 |
47
|
a1dd |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) |
| 49 |
12 32
|
opth |
|- ( <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. <-> ( 1 = 0 /\ ( ( Y + K ) mod N ) = X ) ) |
| 50 |
49
|
a1i |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. <-> ( 1 = 0 /\ ( ( Y + K ) mod N ) = X ) ) ) |
| 51 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 52 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( Y + K ) mod N ) = X -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) ) ) |
| 53 |
51 52
|
mpi |
|- ( 1 = 0 -> ( ( ( Y + K ) mod N ) = X -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) ) |
| 54 |
53
|
imp |
|- ( ( 1 = 0 /\ ( ( Y + K ) mod N ) = X ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) |
| 55 |
50 54
|
biimtrdi |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) ) |
| 56 |
55
|
imp |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) |
| 57 |
|
ovex |
|- ( ( Y - K ) mod N ) e. _V |
| 58 |
12 57
|
opth |
|- ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. <-> ( 1 = 0 /\ ( ( Y - K ) mod N ) = X ) ) |
| 59 |
58
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. <-> ( 1 = 0 /\ ( ( Y - K ) mod N ) = X ) ) ) |
| 60 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> ( ( ( Y - K ) mod N ) = X -> X = Y ) ) ) |
| 61 |
51 60
|
mpi |
|- ( 1 = 0 -> ( ( ( Y - K ) mod N ) = X -> X = Y ) ) |
| 62 |
61
|
imp |
|- ( ( 1 = 0 /\ ( ( Y - K ) mod N ) = X ) -> X = Y ) |
| 63 |
59 62
|
biimtrdi |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. -> X = Y ) ) |
| 64 |
51
|
orci |
|- ( 1 =/= 0 \/ ( ( Y + K ) mod N ) =/= X ) |
| 65 |
12 32
|
opthne |
|- ( <. 1 , ( ( Y + K ) mod N ) >. =/= <. 0 , X >. <-> ( 1 =/= 0 \/ ( ( Y + K ) mod N ) =/= X ) ) |
| 66 |
64 65
|
mpbir |
|- <. 1 , ( ( Y + K ) mod N ) >. =/= <. 0 , X >. |
| 67 |
66
|
a1i |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> <. 1 , ( ( Y + K ) mod N ) >. =/= <. 0 , X >. ) |
| 68 |
|
eqneqall |
|- ( <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. -> ( <. 1 , ( ( Y + K ) mod N ) >. =/= <. 0 , X >. -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. -> X = Y ) ) ) |
| 69 |
67 68
|
mpan9 |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. -> X = Y ) ) |
| 70 |
56 63 69
|
3jaod |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) |
| 71 |
70
|
ex |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) |
| 72 |
12 32
|
opth |
|- ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. <-> ( 1 = 1 /\ ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) ) ) |
| 73 |
12 57
|
opth |
|- ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. <-> ( 1 = 1 /\ ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) ) ) |
| 74 |
|
eluz3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 75 |
7 74
|
syl |
|- ( N e. ( ZZ>= ` 5 ) -> N e. NN ) |
| 76 |
75
|
adantr |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) -> N e. NN ) |
| 77 |
76
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> N e. NN ) |
| 78 |
|
elfzoelz |
|- ( X e. ( 0 ..^ N ) -> X e. ZZ ) |
| 79 |
78 2
|
eleq2s |
|- ( X e. I -> X e. ZZ ) |
| 80 |
79
|
ad2antrl |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) -> X e. ZZ ) |
| 81 |
80
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> X e. ZZ ) |
| 82 |
|
elfzoelz |
|- ( Y e. ( 0 ..^ N ) -> Y e. ZZ ) |
| 83 |
82 2
|
eleq2s |
|- ( Y e. I -> Y e. ZZ ) |
| 84 |
83
|
ad2antll |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) -> Y e. ZZ ) |
| 85 |
84
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> Y e. ZZ ) |
| 86 |
38
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> K e. ZZ ) |
| 87 |
|
modmkpkne |
|- ( ( N e. NN /\ ( X e. ZZ /\ Y e. ZZ /\ K e. ZZ ) ) -> ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) <-> ( ( 4 x. K ) mod N ) = 0 ) ) ) |
| 88 |
77 81 85 86 87
|
syl13anc |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) <-> ( ( 4 x. K ) mod N ) = 0 ) ) ) |
| 89 |
88
|
imp |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) /\ ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) <-> ( ( 4 x. K ) mod N ) = 0 ) ) |
| 90 |
|
eqneqall |
|- ( ( ( 4 x. K ) mod N ) = 0 -> ( ( ( 4 x. K ) mod N ) =/= 0 -> X = Y ) ) |
| 91 |
89 90
|
biimtrdi |
|- ( ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) /\ ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) -> ( ( ( 4 x. K ) mod N ) =/= 0 -> X = Y ) ) ) |
| 92 |
91
|
expimpd |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> ( ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) /\ ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) ) -> ( ( ( 4 x. K ) mod N ) =/= 0 -> X = Y ) ) ) |
| 93 |
92
|
com23 |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) /\ K e. J ) -> ( ( ( 4 x. K ) mod N ) =/= 0 -> ( ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) /\ ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) ) -> X = Y ) ) ) |
| 94 |
93
|
expimpd |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) ) -> ( ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) -> ( ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) /\ ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) ) -> X = Y ) ) ) |
| 95 |
94
|
3impia |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) /\ ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) ) -> X = Y ) ) |
| 96 |
95
|
expd |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) -> X = Y ) ) ) |
| 97 |
96
|
adantld |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( 1 = 1 /\ ( ( Y - K ) mod N ) = ( ( X + K ) mod N ) ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) -> X = Y ) ) ) |
| 98 |
73 97
|
biimtrid |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) -> X = Y ) ) ) |
| 99 |
98
|
com23 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) ) |
| 100 |
99
|
adantld |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( 1 = 1 /\ ( ( Y + K ) mod N ) = ( ( X - K ) mod N ) ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) ) |
| 101 |
72 100
|
biimtrid |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) ) |
| 102 |
101
|
imp |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. -> X = Y ) ) |
| 103 |
51
|
orci |
|- ( 1 =/= 0 \/ ( ( Y - K ) mod N ) =/= X ) |
| 104 |
12 57
|
opthne |
|- ( <. 1 , ( ( Y - K ) mod N ) >. =/= <. 0 , X >. <-> ( 1 =/= 0 \/ ( ( Y - K ) mod N ) =/= X ) ) |
| 105 |
103 104
|
mpbir |
|- <. 1 , ( ( Y - K ) mod N ) >. =/= <. 0 , X >. |
| 106 |
|
eqneqall |
|- ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. -> ( <. 1 , ( ( Y - K ) mod N ) >. =/= <. 0 , X >. -> X = Y ) ) |
| 107 |
105 106
|
mpi |
|- ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. -> X = Y ) |
| 108 |
107
|
a1i |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. -> X = Y ) ) |
| 109 |
|
eqeq2 |
|- ( <. 1 , ( ( X - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. <-> <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. ) ) |
| 110 |
109
|
eqcoms |
|- ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. <-> <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. ) ) |
| 111 |
110
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. <-> <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. ) ) |
| 112 |
12 57
|
opth |
|- ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. <-> ( 1 = 1 /\ ( ( Y - K ) mod N ) = ( ( Y + K ) mod N ) ) ) |
| 113 |
|
simpr |
|- ( ( X e. I /\ Y e. I ) -> Y e. I ) |
| 114 |
1 2
|
modmknepk |
|- ( ( N e. ( ZZ>= ` 3 ) /\ Y e. I /\ K e. J ) -> ( ( Y - K ) mod N ) =/= ( ( Y + K ) mod N ) ) |
| 115 |
7 113 8 114
|
syl3an |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( Y - K ) mod N ) =/= ( ( Y + K ) mod N ) ) |
| 116 |
|
eqneqall |
|- ( ( ( Y - K ) mod N ) = ( ( Y + K ) mod N ) -> ( ( ( Y - K ) mod N ) =/= ( ( Y + K ) mod N ) -> X = Y ) ) |
| 117 |
115 116
|
syl5com |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( Y - K ) mod N ) = ( ( Y + K ) mod N ) -> X = Y ) ) |
| 118 |
117
|
adantld |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( 1 = 1 /\ ( ( Y - K ) mod N ) = ( ( Y + K ) mod N ) ) -> X = Y ) ) |
| 119 |
112 118
|
biimtrid |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. -> X = Y ) ) |
| 120 |
119
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. -> X = Y ) ) |
| 121 |
111 120
|
sylbid |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. -> X = Y ) ) |
| 122 |
102 108 121
|
3jaod |
|- ( ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) /\ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) |
| 123 |
122
|
ex |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) |
| 124 |
48 71 123
|
3jaod |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) |
| 125 |
|
op2ndg |
|- ( ( 1 e. _V /\ X e. I ) -> ( 2nd ` <. 1 , X >. ) = X ) |
| 126 |
15 125
|
syl |
|- ( ( X e. I /\ Y e. I ) -> ( 2nd ` <. 1 , X >. ) = X ) |
| 127 |
126
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( 2nd ` <. 1 , X >. ) = X ) |
| 128 |
|
oveq1 |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( 2nd ` <. 1 , X >. ) + K ) = ( X + K ) ) |
| 129 |
128
|
oveq1d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) = ( ( X + K ) mod N ) ) |
| 130 |
129
|
opeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. ) |
| 131 |
130
|
eqeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. <-> <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. ) ) |
| 132 |
|
opeq2 |
|- ( ( 2nd ` <. 1 , X >. ) = X -> <. 0 , ( 2nd ` <. 1 , X >. ) >. = <. 0 , X >. ) |
| 133 |
132
|
eqeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. <-> <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. ) ) |
| 134 |
|
oveq1 |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( 2nd ` <. 1 , X >. ) - K ) = ( X - K ) ) |
| 135 |
134
|
oveq1d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) = ( ( X - K ) mod N ) ) |
| 136 |
135
|
opeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) |
| 137 |
136
|
eqeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. <-> <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) ) |
| 138 |
131 133 137
|
3orbi123d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) <-> ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) ) ) |
| 139 |
130
|
eqeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. <-> <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. ) ) |
| 140 |
132
|
eqeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. <-> <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. ) ) |
| 141 |
136
|
eqeq2d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. <-> <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) ) |
| 142 |
139 140 141
|
3orbi123d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) <-> ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) ) ) |
| 143 |
142
|
imbi1d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> X = Y ) <-> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) |
| 144 |
138 143
|
imbi12d |
|- ( ( 2nd ` <. 1 , X >. ) = X -> ( ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> X = Y ) ) <-> ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) ) |
| 145 |
127 144
|
syl |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> X = Y ) ) <-> ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , X >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( X - K ) mod N ) >. ) -> X = Y ) ) ) ) |
| 146 |
124 145
|
mpbird |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y + K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> X = Y ) ) ) |
| 147 |
31 146
|
syld |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> X = Y ) ) ) |
| 148 |
147
|
com23 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) + K ) mod N ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 0 , ( 2nd ` <. 1 , X >. ) >. \/ <. 1 , ( ( Y - K ) mod N ) >. = <. 1 , ( ( ( 2nd ` <. 1 , X >. ) - K ) mod N ) >. ) -> ( { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E -> X = Y ) ) ) |
| 149 |
25 148
|
syld |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E -> ( { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E -> X = Y ) ) ) |
| 150 |
149
|
impd |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) -> X = Y ) ) |
| 151 |
|
eqid |
|- 1 = 1 |
| 152 |
151
|
olci |
|- ( 1 = 0 \/ 1 = 1 ) |
| 153 |
152
|
2a1i |
|- ( Y e. I -> ( X e. I -> ( 1 = 0 \/ 1 = 1 ) ) ) |
| 154 |
153
|
imdistanri |
|- ( ( X e. I /\ Y e. I ) -> ( ( 1 = 0 \/ 1 = 1 ) /\ Y e. I ) ) |
| 155 |
154
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( 1 = 0 \/ 1 = 1 ) /\ Y e. I ) ) |
| 156 |
2 1 3 21
|
opgpgvtx |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( <. 1 , Y >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ Y e. I ) ) ) |
| 157 |
9 156
|
syl |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , Y >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ Y e. I ) ) ) |
| 158 |
157
|
3adant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( <. 1 , Y >. e. ( Vtx ` G ) <-> ( ( 1 = 0 \/ 1 = 1 ) /\ Y e. I ) ) ) |
| 159 |
155 158
|
mpbird |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> <. 1 , Y >. e. ( Vtx ` G ) ) |
| 160 |
12
|
a1i |
|- ( X e. I -> 1 e. _V ) |
| 161 |
|
op1stg |
|- ( ( 1 e. _V /\ Y e. I ) -> ( 1st ` <. 1 , Y >. ) = 1 ) |
| 162 |
160 161
|
sylan |
|- ( ( X e. I /\ Y e. I ) -> ( 1st ` <. 1 , Y >. ) = 1 ) |
| 163 |
162
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( 1st ` <. 1 , Y >. ) = 1 ) |
| 164 |
1 3 21 4
|
gpgedgvtx1 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ ( <. 1 , Y >. e. ( Vtx ` G ) /\ ( 1st ` <. 1 , Y >. ) = 1 ) ) -> ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 0 , ( 2nd ` <. 1 , Y >. ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) ) |
| 165 |
10 159 163 164
|
syl12anc |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 0 , ( 2nd ` <. 1 , Y >. ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) ) |
| 166 |
|
op2ndg |
|- ( ( 1 e. _V /\ Y e. I ) -> ( 2nd ` <. 1 , Y >. ) = Y ) |
| 167 |
12 166
|
mpan |
|- ( Y e. I -> ( 2nd ` <. 1 , Y >. ) = Y ) |
| 168 |
|
oveq1 |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( ( 2nd ` <. 1 , Y >. ) - K ) = ( Y - K ) ) |
| 169 |
168
|
oveq1d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) = ( ( Y - K ) mod N ) ) |
| 170 |
169
|
opeq2d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. = <. 1 , ( ( Y - K ) mod N ) >. ) |
| 171 |
170
|
preq2d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } = { <. 1 , Y >. , <. 1 , ( ( Y - K ) mod N ) >. } ) |
| 172 |
|
prcom |
|- { <. 1 , Y >. , <. 1 , ( ( Y - K ) mod N ) >. } = { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } |
| 173 |
171 172
|
eqtrdi |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } = { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } ) |
| 174 |
173
|
eleq1d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E <-> { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E ) ) |
| 175 |
|
oveq1 |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( ( 2nd ` <. 1 , Y >. ) + K ) = ( Y + K ) ) |
| 176 |
175
|
oveq1d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) = ( ( Y + K ) mod N ) ) |
| 177 |
176
|
opeq2d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. = <. 1 , ( ( Y + K ) mod N ) >. ) |
| 178 |
177
|
preq2d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) |
| 179 |
178
|
eleq1d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E <-> { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) |
| 180 |
174 179
|
anbi12d |
|- ( ( 2nd ` <. 1 , Y >. ) = Y -> ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E ) <-> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 181 |
167 180
|
syl |
|- ( Y e. I -> ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E ) <-> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 182 |
181
|
biimpcd |
|- ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E ) -> ( Y e. I -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 183 |
182
|
ancoms |
|- ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) -> ( Y e. I -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 184 |
183
|
3adant2 |
|- ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 0 , ( 2nd ` <. 1 , Y >. ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) -> ( Y e. I -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 185 |
184
|
com12 |
|- ( Y e. I -> ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 0 , ( 2nd ` <. 1 , Y >. ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 186 |
185
|
adantl |
|- ( ( X e. I /\ Y e. I ) -> ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 0 , ( 2nd ` <. 1 , Y >. ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 187 |
186
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) + K ) mod N ) >. } e. E /\ { <. 1 , Y >. , <. 0 , ( 2nd ` <. 1 , Y >. ) >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( ( 2nd ` <. 1 , Y >. ) - K ) mod N ) >. } e. E ) -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 188 |
165 187
|
mpd |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) |
| 189 |
|
opeq2 |
|- ( X = Y -> <. 1 , X >. = <. 1 , Y >. ) |
| 190 |
189
|
preq2d |
|- ( X = Y -> { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } = { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } ) |
| 191 |
190
|
eleq1d |
|- ( X = Y -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E <-> { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E ) ) |
| 192 |
189
|
preq1d |
|- ( X = Y -> { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } = { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } ) |
| 193 |
192
|
eleq1d |
|- ( X = Y -> ( { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E <-> { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) |
| 194 |
191 193
|
anbi12d |
|- ( X = Y -> ( ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) <-> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , Y >. } e. E /\ { <. 1 , Y >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 195 |
188 194
|
syl5ibrcom |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( X = Y -> ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) ) ) |
| 196 |
150 195
|
impbid |
|- ( ( N e. ( ZZ>= ` 5 ) /\ ( X e. I /\ Y e. I ) /\ ( K e. J /\ ( ( 4 x. K ) mod N ) =/= 0 ) ) -> ( ( { <. 1 , ( ( Y - K ) mod N ) >. , <. 1 , X >. } e. E /\ { <. 1 , X >. , <. 1 , ( ( Y + K ) mod N ) >. } e. E ) <-> X = Y ) ) |