| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
|- ( A e. _om -> A e. On ) |
| 2 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
| 3 |
|
harval2 |
|- ( A e. dom card -> ( har ` A ) = |^| { x e. On | A ~< x } ) |
| 4 |
1 2 3
|
3syl |
|- ( A e. _om -> ( har ` A ) = |^| { x e. On | A ~< x } ) |
| 5 |
|
sucdom |
|- ( A e. _om -> ( A ~< x <-> suc A ~<_ x ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. _om /\ x e. On ) -> ( A ~< x <-> suc A ~<_ x ) ) |
| 7 |
|
peano2 |
|- ( A e. _om -> suc A e. _om ) |
| 8 |
|
nndomog |
|- ( ( suc A e. _om /\ x e. On ) -> ( suc A ~<_ x <-> suc A C_ x ) ) |
| 9 |
7 8
|
sylan |
|- ( ( A e. _om /\ x e. On ) -> ( suc A ~<_ x <-> suc A C_ x ) ) |
| 10 |
6 9
|
bitrd |
|- ( ( A e. _om /\ x e. On ) -> ( A ~< x <-> suc A C_ x ) ) |
| 11 |
10
|
rabbidva |
|- ( A e. _om -> { x e. On | A ~< x } = { x e. On | suc A C_ x } ) |
| 12 |
11
|
inteqd |
|- ( A e. _om -> |^| { x e. On | A ~< x } = |^| { x e. On | suc A C_ x } ) |
| 13 |
|
nnon |
|- ( suc A e. _om -> suc A e. On ) |
| 14 |
|
intmin |
|- ( suc A e. On -> |^| { x e. On | suc A C_ x } = suc A ) |
| 15 |
7 13 14
|
3syl |
|- ( A e. _om -> |^| { x e. On | suc A C_ x } = suc A ) |
| 16 |
4 12 15
|
3eqtrd |
|- ( A e. _om -> ( har ` A ) = suc A ) |