| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ip2eqi.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | ip2eqi.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 3 |  | ip2eqi.u |  |-  U e. CPreHilOLD | 
						
							| 4 | 3 | phnvi |  |-  U e. NrmCVec | 
						
							| 5 |  | eqid |  |-  ( -v ` U ) = ( -v ` U ) | 
						
							| 6 | 1 5 | nvmcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) e. X ) | 
						
							| 7 | 4 6 | mp3an1 |  |-  ( ( A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) e. X ) | 
						
							| 8 |  | oveq1 |  |-  ( x = ( A ( -v ` U ) B ) -> ( x P A ) = ( ( A ( -v ` U ) B ) P A ) ) | 
						
							| 9 |  | oveq1 |  |-  ( x = ( A ( -v ` U ) B ) -> ( x P B ) = ( ( A ( -v ` U ) B ) P B ) ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( x = ( A ( -v ` U ) B ) -> ( ( x P A ) = ( x P B ) <-> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 11 | 10 | rspcv |  |-  ( ( A ( -v ` U ) B ) e. X -> ( A. x e. X ( x P A ) = ( x P B ) -> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) -> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 13 |  | simpl |  |-  ( ( A e. X /\ B e. X ) -> A e. X ) | 
						
							| 14 |  | simpr |  |-  ( ( A e. X /\ B e. X ) -> B e. X ) | 
						
							| 15 | 1 5 2 | dipsubdi |  |-  ( ( U e. CPreHilOLD /\ ( ( A ( -v ` U ) B ) e. X /\ A e. X /\ B e. X ) ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 16 | 3 15 | mpan |  |-  ( ( ( A ( -v ` U ) B ) e. X /\ A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 17 | 7 13 14 16 | syl3anc |  |-  ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 ) ) | 
						
							| 19 |  | eqid |  |-  ( 0vec ` U ) = ( 0vec ` U ) | 
						
							| 20 | 1 19 2 | ipz |  |-  ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) | 
						
							| 21 | 4 20 | mpan |  |-  ( ( A ( -v ` U ) B ) e. X -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) | 
						
							| 22 | 7 21 | syl |  |-  ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P ( A ( -v ` U ) B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) | 
						
							| 23 | 18 22 | bitr3d |  |-  ( ( A e. X /\ B e. X ) -> ( ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 <-> ( A ( -v ` U ) B ) = ( 0vec ` U ) ) ) | 
						
							| 24 | 1 2 | dipcl |  |-  ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X /\ A e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) | 
						
							| 25 | 4 24 | mp3an1 |  |-  ( ( ( A ( -v ` U ) B ) e. X /\ A e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) | 
						
							| 26 | 7 13 25 | syl2anc |  |-  ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P A ) e. CC ) | 
						
							| 27 | 1 2 | dipcl |  |-  ( ( U e. NrmCVec /\ ( A ( -v ` U ) B ) e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) | 
						
							| 28 | 4 27 | mp3an1 |  |-  ( ( ( A ( -v ` U ) B ) e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) | 
						
							| 29 | 7 28 | sylancom |  |-  ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) P B ) e. CC ) | 
						
							| 30 | 26 29 | subeq0ad |  |-  ( ( A e. X /\ B e. X ) -> ( ( ( ( A ( -v ` U ) B ) P A ) - ( ( A ( -v ` U ) B ) P B ) ) = 0 <-> ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) ) ) | 
						
							| 31 | 1 5 19 | nvmeq0 |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) = ( 0vec ` U ) <-> A = B ) ) | 
						
							| 32 | 4 31 | mp3an1 |  |-  ( ( A e. X /\ B e. X ) -> ( ( A ( -v ` U ) B ) = ( 0vec ` U ) <-> A = B ) ) | 
						
							| 33 | 23 30 32 | 3bitr3d |  |-  ( ( A e. X /\ B e. X ) -> ( ( ( A ( -v ` U ) B ) P A ) = ( ( A ( -v ` U ) B ) P B ) <-> A = B ) ) | 
						
							| 34 | 12 33 | sylibd |  |-  ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) -> A = B ) ) | 
						
							| 35 |  | oveq2 |  |-  ( A = B -> ( x P A ) = ( x P B ) ) | 
						
							| 36 | 35 | ralrimivw |  |-  ( A = B -> A. x e. X ( x P A ) = ( x P B ) ) | 
						
							| 37 | 34 36 | impbid1 |  |-  ( ( A e. X /\ B e. X ) -> ( A. x e. X ( x P A ) = ( x P B ) <-> A = B ) ) |