Metamath Proof Explorer


Theorem ip2eqi

Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2eqi.1 X = BaseSet U
ip2eqi.7 P = 𝑖OLD U
ip2eqi.u U CPreHil OLD
Assertion ip2eqi A X B X x X x P A = x P B A = B

Proof

Step Hyp Ref Expression
1 ip2eqi.1 X = BaseSet U
2 ip2eqi.7 P = 𝑖OLD U
3 ip2eqi.u U CPreHil OLD
4 3 phnvi U NrmCVec
5 eqid - v U = - v U
6 1 5 nvmcl U NrmCVec A X B X A - v U B X
7 4 6 mp3an1 A X B X A - v U B X
8 oveq1 x = A - v U B x P A = A - v U B P A
9 oveq1 x = A - v U B x P B = A - v U B P B
10 8 9 eqeq12d x = A - v U B x P A = x P B A - v U B P A = A - v U B P B
11 10 rspcv A - v U B X x X x P A = x P B A - v U B P A = A - v U B P B
12 7 11 syl A X B X x X x P A = x P B A - v U B P A = A - v U B P B
13 simpl A X B X A X
14 simpr A X B X B X
15 1 5 2 dipsubdi U CPreHil OLD A - v U B X A X B X A - v U B P A - v U B = A - v U B P A A - v U B P B
16 3 15 mpan A - v U B X A X B X A - v U B P A - v U B = A - v U B P A A - v U B P B
17 7 13 14 16 syl3anc A X B X A - v U B P A - v U B = A - v U B P A A - v U B P B
18 17 eqeq1d A X B X A - v U B P A - v U B = 0 A - v U B P A A - v U B P B = 0
19 eqid 0 vec U = 0 vec U
20 1 19 2 ipz U NrmCVec A - v U B X A - v U B P A - v U B = 0 A - v U B = 0 vec U
21 4 20 mpan A - v U B X A - v U B P A - v U B = 0 A - v U B = 0 vec U
22 7 21 syl A X B X A - v U B P A - v U B = 0 A - v U B = 0 vec U
23 18 22 bitr3d A X B X A - v U B P A A - v U B P B = 0 A - v U B = 0 vec U
24 1 2 dipcl U NrmCVec A - v U B X A X A - v U B P A
25 4 24 mp3an1 A - v U B X A X A - v U B P A
26 7 13 25 syl2anc A X B X A - v U B P A
27 1 2 dipcl U NrmCVec A - v U B X B X A - v U B P B
28 4 27 mp3an1 A - v U B X B X A - v U B P B
29 7 28 sylancom A X B X A - v U B P B
30 26 29 subeq0ad A X B X A - v U B P A A - v U B P B = 0 A - v U B P A = A - v U B P B
31 1 5 19 nvmeq0 U NrmCVec A X B X A - v U B = 0 vec U A = B
32 4 31 mp3an1 A X B X A - v U B = 0 vec U A = B
33 23 30 32 3bitr3d A X B X A - v U B P A = A - v U B P B A = B
34 12 33 sylibd A X B X x X x P A = x P B A = B
35 oveq2 A = B x P A = x P B
36 35 ralrimivw A = B x X x P A = x P B
37 34 36 impbid1 A X B X x X x P A = x P B A = B