Metamath Proof Explorer


Theorem ip2eqi

Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2eqi.1 X=BaseSetU
ip2eqi.7 P=𝑖OLDU
ip2eqi.u UCPreHilOLD
Assertion ip2eqi AXBXxXxPA=xPBA=B

Proof

Step Hyp Ref Expression
1 ip2eqi.1 X=BaseSetU
2 ip2eqi.7 P=𝑖OLDU
3 ip2eqi.u UCPreHilOLD
4 3 phnvi UNrmCVec
5 eqid -vU=-vU
6 1 5 nvmcl UNrmCVecAXBXA-vUBX
7 4 6 mp3an1 AXBXA-vUBX
8 oveq1 x=A-vUBxPA=A-vUBPA
9 oveq1 x=A-vUBxPB=A-vUBPB
10 8 9 eqeq12d x=A-vUBxPA=xPBA-vUBPA=A-vUBPB
11 10 rspcv A-vUBXxXxPA=xPBA-vUBPA=A-vUBPB
12 7 11 syl AXBXxXxPA=xPBA-vUBPA=A-vUBPB
13 simpl AXBXAX
14 simpr AXBXBX
15 1 5 2 dipsubdi UCPreHilOLDA-vUBXAXBXA-vUBPA-vUB=A-vUBPAA-vUBPB
16 3 15 mpan A-vUBXAXBXA-vUBPA-vUB=A-vUBPAA-vUBPB
17 7 13 14 16 syl3anc AXBXA-vUBPA-vUB=A-vUBPAA-vUBPB
18 17 eqeq1d AXBXA-vUBPA-vUB=0A-vUBPAA-vUBPB=0
19 eqid 0vecU=0vecU
20 1 19 2 ipz UNrmCVecA-vUBXA-vUBPA-vUB=0A-vUB=0vecU
21 4 20 mpan A-vUBXA-vUBPA-vUB=0A-vUB=0vecU
22 7 21 syl AXBXA-vUBPA-vUB=0A-vUB=0vecU
23 18 22 bitr3d AXBXA-vUBPAA-vUBPB=0A-vUB=0vecU
24 1 2 dipcl UNrmCVecA-vUBXAXA-vUBPA
25 4 24 mp3an1 A-vUBXAXA-vUBPA
26 7 13 25 syl2anc AXBXA-vUBPA
27 1 2 dipcl UNrmCVecA-vUBXBXA-vUBPB
28 4 27 mp3an1 A-vUBXBXA-vUBPB
29 7 28 sylancom AXBXA-vUBPB
30 26 29 subeq0ad AXBXA-vUBPAA-vUBPB=0A-vUBPA=A-vUBPB
31 1 5 19 nvmeq0 UNrmCVecAXBXA-vUB=0vecUA=B
32 4 31 mp3an1 AXBXA-vUB=0vecUA=B
33 23 30 32 3bitr3d AXBXA-vUBPA=A-vUBPBA=B
34 12 33 sylibd AXBXxXxPA=xPBA=B
35 oveq2 A=BxPA=xPB
36 35 ralrimivw A=BxXxPA=xPB
37 34 36 impbid1 AXBXxXxPA=xPBA=B