Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxub.2 |
|- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w S B ) ) |
3 |
|
ixxub.3 |
|- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w <_ B ) ) |
4 |
|
ixxub.4 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A R w ) ) |
5 |
|
ixxub.5 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A <_ w ) ) |
6 |
1
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
8 |
7
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
9 |
8
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w e. RR* ) |
10 |
9
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) -> w e. RR* ) ) |
11 |
10
|
ssrdv |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) C_ RR* ) |
12 |
|
supxrcl |
|- ( ( A O B ) C_ RR* -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
13 |
11 12
|
syl |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
14 |
|
simp2 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> B e. RR* ) |
15 |
8
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w S B ) |
16 |
14
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> B e. RR* ) |
17 |
9 16 3
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w S B -> w <_ B ) ) |
18 |
15 17
|
mpd |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w <_ B ) |
19 |
18
|
ralrimiva |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A. w e. ( A O B ) w <_ B ) |
20 |
|
supxrleub |
|- ( ( ( A O B ) C_ RR* /\ B e. RR* ) -> ( sup ( ( A O B ) , RR* , < ) <_ B <-> A. w e. ( A O B ) w <_ B ) ) |
21 |
11 14 20
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( sup ( ( A O B ) , RR* , < ) <_ B <-> A. w e. ( A O B ) w <_ B ) ) |
22 |
19 21
|
mpbird |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) <_ B ) |
23 |
|
simprl |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> sup ( ( A O B ) , RR* , < ) < w ) |
24 |
11
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( A O B ) C_ RR* ) |
25 |
|
qre |
|- ( w e. QQ -> w e. RR ) |
26 |
25
|
rexrd |
|- ( w e. QQ -> w e. RR* ) |
27 |
26
|
ad2antlr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w e. RR* ) |
28 |
|
simp1 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A e. RR* ) |
29 |
28
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A e. RR* ) |
30 |
13
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
31 |
|
simp3 |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) =/= (/) ) |
32 |
|
n0 |
|- ( ( A O B ) =/= (/) <-> E. w w e. ( A O B ) ) |
33 |
31 32
|
sylib |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> E. w w e. ( A O B ) ) |
34 |
28
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A e. RR* ) |
35 |
13
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
36 |
8
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A R w ) |
37 |
34 9 5
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( A R w -> A <_ w ) ) |
38 |
36 37
|
mpd |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A <_ w ) |
39 |
|
supxrub |
|- ( ( ( A O B ) C_ RR* /\ w e. ( A O B ) ) -> w <_ sup ( ( A O B ) , RR* , < ) ) |
40 |
11 39
|
sylan |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w <_ sup ( ( A O B ) , RR* , < ) ) |
41 |
34 9 35 38 40
|
xrletrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A <_ sup ( ( A O B ) , RR* , < ) ) |
42 |
33 41
|
exlimddv |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A <_ sup ( ( A O B ) , RR* , < ) ) |
43 |
42
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A <_ sup ( ( A O B ) , RR* , < ) ) |
44 |
29 30 27 43 23
|
xrlelttrd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A < w ) |
45 |
29 27 4
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( A < w -> A R w ) ) |
46 |
44 45
|
mpd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A R w ) |
47 |
|
simprr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w < B ) |
48 |
14
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> B e. RR* ) |
49 |
27 48 2
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( w < B -> w S B ) ) |
50 |
47 49
|
mpd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w S B ) |
51 |
7
|
ad2antrr |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
52 |
27 46 50 51
|
mpbir3and |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w e. ( A O B ) ) |
53 |
24 52 39
|
syl2anc |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w <_ sup ( ( A O B ) , RR* , < ) ) |
54 |
27 30
|
xrlenltd |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( w <_ sup ( ( A O B ) , RR* , < ) <-> -. sup ( ( A O B ) , RR* , < ) < w ) ) |
55 |
53 54
|
mpbid |
|- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> -. sup ( ( A O B ) , RR* , < ) < w ) |
56 |
23 55
|
pm2.65da |
|- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) -> -. ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) |
57 |
56
|
nrexdv |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) |
58 |
|
qbtwnxr |
|- ( ( sup ( ( A O B ) , RR* , < ) e. RR* /\ B e. RR* /\ sup ( ( A O B ) , RR* , < ) < B ) -> E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) |
59 |
58
|
3expia |
|- ( ( sup ( ( A O B ) , RR* , < ) e. RR* /\ B e. RR* ) -> ( sup ( ( A O B ) , RR* , < ) < B -> E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) ) |
60 |
13 14 59
|
syl2anc |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( sup ( ( A O B ) , RR* , < ) < B -> E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) ) |
61 |
57 60
|
mtod |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. sup ( ( A O B ) , RR* , < ) < B ) |
62 |
14 13 61
|
xrnltled |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> B <_ sup ( ( A O B ) , RR* , < ) ) |
63 |
13 14 22 62
|
xrletrid |
|- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) = B ) |