| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdslcm |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| 2 |
1
|
simpld |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) |
| 3 |
2
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> M || ( M lcm N ) ) |
| 4 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 5 |
4
|
simprd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
| 6 |
|
breq1 |
|- ( ( M lcm N ) = ( M gcd N ) -> ( ( M lcm N ) || N <-> ( M gcd N ) || N ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) -> ( M lcm N ) || N ) ) |
| 8 |
7
|
imp |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M lcm N ) || N ) |
| 9 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
| 10 |
9
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 11 |
|
dvdstr |
|- ( ( M e. ZZ /\ ( M lcm N ) e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 12 |
10 11
|
syl3an2 |
|- ( ( M e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 13 |
12
|
3com12 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 14 |
13
|
3expb |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 15 |
14
|
anidms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 16 |
15
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) |
| 17 |
3 8 16
|
mp2and |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> M || N ) |
| 18 |
|
absdvdsb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| 19 |
|
zabscl |
|- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
| 20 |
|
dvdsabsb |
|- ( ( ( abs ` M ) e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 21 |
19 20
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 22 |
18 21
|
bitrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 23 |
22
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) ) |
| 24 |
17 23
|
mpbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` M ) || ( abs ` N ) ) |
| 25 |
1
|
simprd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) |
| 26 |
25
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> N || ( M lcm N ) ) |
| 27 |
4
|
simpld |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 28 |
|
breq1 |
|- ( ( M lcm N ) = ( M gcd N ) -> ( ( M lcm N ) || M <-> ( M gcd N ) || M ) ) |
| 29 |
27 28
|
syl5ibrcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) -> ( M lcm N ) || M ) ) |
| 30 |
29
|
imp |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M lcm N ) || M ) |
| 31 |
|
dvdstr |
|- ( ( N e. ZZ /\ ( M lcm N ) e. ZZ /\ M e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 32 |
10 31
|
syl3an2 |
|- ( ( N e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 33 |
32
|
3coml |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 34 |
33
|
3expb |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 35 |
34
|
anidms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 36 |
35
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) |
| 37 |
26 30 36
|
mp2and |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> N || M ) |
| 38 |
|
absdvdsb |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N || M <-> ( abs ` N ) || M ) ) |
| 39 |
|
zabscl |
|- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
| 40 |
|
dvdsabsb |
|- ( ( ( abs ` N ) e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 41 |
39 40
|
sylan |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 42 |
38 41
|
bitrd |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 43 |
42
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 44 |
43
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) |
| 45 |
37 44
|
mpbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` N ) || ( abs ` M ) ) |
| 46 |
|
nn0abscl |
|- ( M e. ZZ -> ( abs ` M ) e. NN0 ) |
| 47 |
|
nn0abscl |
|- ( N e. ZZ -> ( abs ` N ) e. NN0 ) |
| 48 |
46 47
|
anim12i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) e. NN0 /\ ( abs ` N ) e. NN0 ) ) |
| 49 |
|
dvdseq |
|- ( ( ( ( abs ` M ) e. NN0 /\ ( abs ` N ) e. NN0 ) /\ ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) ) -> ( abs ` M ) = ( abs ` N ) ) |
| 50 |
48 49
|
sylan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) ) -> ( abs ` M ) = ( abs ` N ) ) |
| 51 |
50
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 52 |
51
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) -> ( abs ` M ) = ( abs ` N ) ) ) |
| 53 |
24 45 52
|
mp2and |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` M ) = ( abs ` N ) ) |
| 54 |
|
lcmid |
|- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
| 55 |
19 54
|
syl |
|- ( M e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
| 56 |
|
gcdid |
|- ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
| 57 |
19 56
|
syl |
|- ( M e. ZZ -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) |
| 58 |
55 57
|
eqtr4d |
|- ( M e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` M ) ) ) |
| 59 |
|
oveq2 |
|- ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) lcm ( abs ` N ) ) ) |
| 60 |
|
oveq2 |
|- ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) |
| 61 |
59 60
|
eqeq12d |
|- ( ( abs ` M ) = ( abs ` N ) -> ( ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` M ) ) <-> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
| 62 |
58 61
|
syl5ibcom |
|- ( M e. ZZ -> ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) ) |
| 63 |
62
|
imp |
|- ( ( M e. ZZ /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) |
| 64 |
63
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) |
| 65 |
|
lcmabs |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
| 66 |
|
gcdabs |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
| 67 |
65 66
|
eqeq12d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) <-> ( M lcm N ) = ( M gcd N ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) <-> ( M lcm N ) = ( M gcd N ) ) ) |
| 69 |
64 68
|
mpbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( M lcm N ) = ( M gcd N ) ) |
| 70 |
53 69
|
impbida |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) <-> ( abs ` M ) = ( abs ` N ) ) ) |