| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
| 2 |
1
|
times2d |
|- ( A e. RR+ -> ( A x. 2 ) = ( A + A ) ) |
| 3 |
2
|
oveq2d |
|- ( A e. RR+ -> ( ( A x. ( log ` A ) ) - ( A x. 2 ) ) = ( ( A x. ( log ` A ) ) - ( A + A ) ) ) |
| 4 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 5 |
4
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 6 |
|
2cnd |
|- ( A e. RR+ -> 2 e. CC ) |
| 7 |
1 5 6
|
subdid |
|- ( A e. RR+ -> ( A x. ( ( log ` A ) - 2 ) ) = ( ( A x. ( log ` A ) ) - ( A x. 2 ) ) ) |
| 8 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 9 |
8 4
|
remulcld |
|- ( A e. RR+ -> ( A x. ( log ` A ) ) e. RR ) |
| 10 |
9
|
recnd |
|- ( A e. RR+ -> ( A x. ( log ` A ) ) e. CC ) |
| 11 |
10 1 1
|
subsub4d |
|- ( A e. RR+ -> ( ( ( A x. ( log ` A ) ) - A ) - A ) = ( ( A x. ( log ` A ) ) - ( A + A ) ) ) |
| 12 |
3 7 11
|
3eqtr4d |
|- ( A e. RR+ -> ( A x. ( ( log ` A ) - 2 ) ) = ( ( ( A x. ( log ` A ) ) - A ) - A ) ) |
| 13 |
9 8
|
resubcld |
|- ( A e. RR+ -> ( ( A x. ( log ` A ) ) - A ) e. RR ) |
| 14 |
|
fzfid |
|- ( A e. RR+ -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
| 15 |
|
fzfid |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... n ) e. Fin ) |
| 16 |
|
elfznn |
|- ( d e. ( 1 ... n ) -> d e. NN ) |
| 17 |
16
|
adantl |
|- ( ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. ( 1 ... n ) ) -> d e. NN ) |
| 18 |
17
|
nnrecred |
|- ( ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. ( 1 ... n ) ) -> ( 1 / d ) e. RR ) |
| 19 |
15 18
|
fsumrecl |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ d e. ( 1 ... n ) ( 1 / d ) e. RR ) |
| 20 |
14 19
|
fsumrecl |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) e. RR ) |
| 21 |
|
rprege0 |
|- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
| 22 |
|
flge0nn0 |
|- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |
| 23 |
21 22
|
syl |
|- ( A e. RR+ -> ( |_ ` A ) e. NN0 ) |
| 24 |
23
|
faccld |
|- ( A e. RR+ -> ( ! ` ( |_ ` A ) ) e. NN ) |
| 25 |
24
|
nnrpd |
|- ( A e. RR+ -> ( ! ` ( |_ ` A ) ) e. RR+ ) |
| 26 |
25
|
relogcld |
|- ( A e. RR+ -> ( log ` ( ! ` ( |_ ` A ) ) ) e. RR ) |
| 27 |
26 8
|
readdcld |
|- ( A e. RR+ -> ( ( log ` ( ! ` ( |_ ` A ) ) ) + A ) e. RR ) |
| 28 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> d e. NN ) |
| 29 |
28
|
adantl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. NN ) |
| 30 |
29
|
nnrecred |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / d ) e. RR ) |
| 31 |
14 30
|
fsumrecl |
|- ( A e. RR+ -> sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) e. RR ) |
| 32 |
8 31
|
remulcld |
|- ( A e. RR+ -> ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) e. RR ) |
| 33 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 34 |
8 33
|
syl |
|- ( A e. RR+ -> ( |_ ` A ) e. RR ) |
| 35 |
32 34
|
resubcld |
|- ( A e. RR+ -> ( ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) - ( |_ ` A ) ) e. RR ) |
| 36 |
|
harmoniclbnd |
|- ( A e. RR+ -> ( log ` A ) <_ sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) |
| 37 |
|
rpregt0 |
|- ( A e. RR+ -> ( A e. RR /\ 0 < A ) ) |
| 38 |
|
lemul2 |
|- ( ( ( log ` A ) e. RR /\ sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( log ` A ) <_ sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) <-> ( A x. ( log ` A ) ) <_ ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) ) ) |
| 39 |
4 31 37 38
|
syl3anc |
|- ( A e. RR+ -> ( ( log ` A ) <_ sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) <-> ( A x. ( log ` A ) ) <_ ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) ) ) |
| 40 |
36 39
|
mpbid |
|- ( A e. RR+ -> ( A x. ( log ` A ) ) <_ ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) ) |
| 41 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
| 42 |
8 41
|
syl |
|- ( A e. RR+ -> ( |_ ` A ) <_ A ) |
| 43 |
9 34 32 8 40 42
|
le2subd |
|- ( A e. RR+ -> ( ( A x. ( log ` A ) ) - A ) <_ ( ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) - ( |_ ` A ) ) ) |
| 44 |
28
|
nnrecred |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> ( 1 / d ) e. RR ) |
| 45 |
|
remulcl |
|- ( ( A e. RR /\ ( 1 / d ) e. RR ) -> ( A x. ( 1 / d ) ) e. RR ) |
| 46 |
8 44 45
|
syl2an |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( A x. ( 1 / d ) ) e. RR ) |
| 47 |
|
peano2rem |
|- ( ( A x. ( 1 / d ) ) e. RR -> ( ( A x. ( 1 / d ) ) - 1 ) e. RR ) |
| 48 |
46 47
|
syl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A x. ( 1 / d ) ) - 1 ) e. RR ) |
| 49 |
|
fzfid |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( d ... ( |_ ` A ) ) e. Fin ) |
| 50 |
30
|
adantr |
|- ( ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) /\ n e. ( d ... ( |_ ` A ) ) ) -> ( 1 / d ) e. RR ) |
| 51 |
49 50
|
fsumrecl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) e. RR ) |
| 52 |
8
|
adantr |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> A e. RR ) |
| 53 |
52 33
|
syl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( |_ ` A ) e. RR ) |
| 54 |
|
peano2re |
|- ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 55 |
53 54
|
syl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( |_ ` A ) + 1 ) e. RR ) |
| 56 |
29
|
nnred |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. RR ) |
| 57 |
|
fllep1 |
|- ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) ) |
| 58 |
8 57
|
syl |
|- ( A e. RR+ -> A <_ ( ( |_ ` A ) + 1 ) ) |
| 59 |
58
|
adantr |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> A <_ ( ( |_ ` A ) + 1 ) ) |
| 60 |
52 55 56 59
|
lesub1dd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( A - d ) <_ ( ( ( |_ ` A ) + 1 ) - d ) ) |
| 61 |
52 56
|
resubcld |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( A - d ) e. RR ) |
| 62 |
55 56
|
resubcld |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( |_ ` A ) + 1 ) - d ) e. RR ) |
| 63 |
29
|
nnrpd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. RR+ ) |
| 64 |
63
|
rpreccld |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / d ) e. RR+ ) |
| 65 |
61 62 64
|
lemul1d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A - d ) <_ ( ( ( |_ ` A ) + 1 ) - d ) <-> ( ( A - d ) x. ( 1 / d ) ) <_ ( ( ( ( |_ ` A ) + 1 ) - d ) x. ( 1 / d ) ) ) ) |
| 66 |
60 65
|
mpbid |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A - d ) x. ( 1 / d ) ) <_ ( ( ( ( |_ ` A ) + 1 ) - d ) x. ( 1 / d ) ) ) |
| 67 |
1
|
adantr |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> A e. CC ) |
| 68 |
29
|
nncnd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d e. CC ) |
| 69 |
30
|
recnd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / d ) e. CC ) |
| 70 |
67 68 69
|
subdird |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A - d ) x. ( 1 / d ) ) = ( ( A x. ( 1 / d ) ) - ( d x. ( 1 / d ) ) ) ) |
| 71 |
29
|
nnne0d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> d =/= 0 ) |
| 72 |
68 71
|
recidd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( d x. ( 1 / d ) ) = 1 ) |
| 73 |
72
|
oveq2d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A x. ( 1 / d ) ) - ( d x. ( 1 / d ) ) ) = ( ( A x. ( 1 / d ) ) - 1 ) ) |
| 74 |
70 73
|
eqtr2d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A x. ( 1 / d ) ) - 1 ) = ( ( A - d ) x. ( 1 / d ) ) ) |
| 75 |
|
fsumconst |
|- ( ( ( d ... ( |_ ` A ) ) e. Fin /\ ( 1 / d ) e. CC ) -> sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) = ( ( # ` ( d ... ( |_ ` A ) ) ) x. ( 1 / d ) ) ) |
| 76 |
49 69 75
|
syl2anc |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) = ( ( # ` ( d ... ( |_ ` A ) ) ) x. ( 1 / d ) ) ) |
| 77 |
|
elfzuz3 |
|- ( d e. ( 1 ... ( |_ ` A ) ) -> ( |_ ` A ) e. ( ZZ>= ` d ) ) |
| 78 |
77
|
adantl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( |_ ` A ) e. ( ZZ>= ` d ) ) |
| 79 |
|
hashfz |
|- ( ( |_ ` A ) e. ( ZZ>= ` d ) -> ( # ` ( d ... ( |_ ` A ) ) ) = ( ( ( |_ ` A ) - d ) + 1 ) ) |
| 80 |
78 79
|
syl |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( # ` ( d ... ( |_ ` A ) ) ) = ( ( ( |_ ` A ) - d ) + 1 ) ) |
| 81 |
34
|
recnd |
|- ( A e. RR+ -> ( |_ ` A ) e. CC ) |
| 82 |
81
|
adantr |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( |_ ` A ) e. CC ) |
| 83 |
|
1cnd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> 1 e. CC ) |
| 84 |
82 83 68
|
addsubd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( |_ ` A ) + 1 ) - d ) = ( ( ( |_ ` A ) - d ) + 1 ) ) |
| 85 |
80 84
|
eqtr4d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( # ` ( d ... ( |_ ` A ) ) ) = ( ( ( |_ ` A ) + 1 ) - d ) ) |
| 86 |
85
|
oveq1d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( # ` ( d ... ( |_ ` A ) ) ) x. ( 1 / d ) ) = ( ( ( ( |_ ` A ) + 1 ) - d ) x. ( 1 / d ) ) ) |
| 87 |
76 86
|
eqtrd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) = ( ( ( ( |_ ` A ) + 1 ) - d ) x. ( 1 / d ) ) ) |
| 88 |
66 74 87
|
3brtr4d |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( ( A x. ( 1 / d ) ) - 1 ) <_ sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) ) |
| 89 |
14 48 51 88
|
fsumle |
|- ( A e. RR+ -> sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( A x. ( 1 / d ) ) - 1 ) <_ sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) ) |
| 90 |
14 1 69
|
fsummulc2 |
|- ( A e. RR+ -> ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) ( A x. ( 1 / d ) ) ) |
| 91 |
|
ax-1cn |
|- 1 e. CC |
| 92 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` A ) ) e. Fin /\ 1 e. CC ) -> sum_ d e. ( 1 ... ( |_ ` A ) ) 1 = ( ( # ` ( 1 ... ( |_ ` A ) ) ) x. 1 ) ) |
| 93 |
14 91 92
|
sylancl |
|- ( A e. RR+ -> sum_ d e. ( 1 ... ( |_ ` A ) ) 1 = ( ( # ` ( 1 ... ( |_ ` A ) ) ) x. 1 ) ) |
| 94 |
|
hashfz1 |
|- ( ( |_ ` A ) e. NN0 -> ( # ` ( 1 ... ( |_ ` A ) ) ) = ( |_ ` A ) ) |
| 95 |
23 94
|
syl |
|- ( A e. RR+ -> ( # ` ( 1 ... ( |_ ` A ) ) ) = ( |_ ` A ) ) |
| 96 |
95
|
oveq1d |
|- ( A e. RR+ -> ( ( # ` ( 1 ... ( |_ ` A ) ) ) x. 1 ) = ( ( |_ ` A ) x. 1 ) ) |
| 97 |
81
|
mulridd |
|- ( A e. RR+ -> ( ( |_ ` A ) x. 1 ) = ( |_ ` A ) ) |
| 98 |
93 96 97
|
3eqtrrd |
|- ( A e. RR+ -> ( |_ ` A ) = sum_ d e. ( 1 ... ( |_ ` A ) ) 1 ) |
| 99 |
90 98
|
oveq12d |
|- ( A e. RR+ -> ( ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) - ( |_ ` A ) ) = ( sum_ d e. ( 1 ... ( |_ ` A ) ) ( A x. ( 1 / d ) ) - sum_ d e. ( 1 ... ( |_ ` A ) ) 1 ) ) |
| 100 |
46
|
recnd |
|- ( ( A e. RR+ /\ d e. ( 1 ... ( |_ ` A ) ) ) -> ( A x. ( 1 / d ) ) e. CC ) |
| 101 |
14 100 83
|
fsumsub |
|- ( A e. RR+ -> sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( A x. ( 1 / d ) ) - 1 ) = ( sum_ d e. ( 1 ... ( |_ ` A ) ) ( A x. ( 1 / d ) ) - sum_ d e. ( 1 ... ( |_ ` A ) ) 1 ) ) |
| 102 |
99 101
|
eqtr4d |
|- ( A e. RR+ -> ( ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) - ( |_ ` A ) ) = sum_ d e. ( 1 ... ( |_ ` A ) ) ( ( A x. ( 1 / d ) ) - 1 ) ) |
| 103 |
|
eqid |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` 1 ) |
| 104 |
103
|
uztrn2 |
|- ( ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) -> n e. ( ZZ>= ` 1 ) ) |
| 105 |
104
|
adantl |
|- ( ( A e. RR+ /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) -> n e. ( ZZ>= ` 1 ) ) |
| 106 |
105
|
biantrurd |
|- ( ( A e. RR+ /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) -> ( ( |_ ` A ) e. ( ZZ>= ` n ) <-> ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) |
| 107 |
|
uzss |
|- ( n e. ( ZZ>= ` d ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` d ) ) |
| 108 |
107
|
ad2antll |
|- ( ( A e. RR+ /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` d ) ) |
| 109 |
108
|
sseld |
|- ( ( A e. RR+ /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) -> ( ( |_ ` A ) e. ( ZZ>= ` n ) -> ( |_ ` A ) e. ( ZZ>= ` d ) ) ) |
| 110 |
109
|
pm4.71rd |
|- ( ( A e. RR+ /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) -> ( ( |_ ` A ) e. ( ZZ>= ` n ) <-> ( ( |_ ` A ) e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) |
| 111 |
106 110
|
bitr3d |
|- ( ( A e. RR+ /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) -> ( ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) <-> ( ( |_ ` A ) e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) |
| 112 |
111
|
pm5.32da |
|- ( A e. RR+ -> ( ( ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) /\ ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) <-> ( ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) /\ ( ( |_ ` A ) e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) ) |
| 113 |
|
ancom |
|- ( ( ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) <-> ( ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) /\ ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) |
| 114 |
|
an4 |
|- ( ( ( d e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` d ) ) /\ ( n e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) <-> ( ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) /\ ( ( |_ ` A ) e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) |
| 115 |
112 113 114
|
3bitr4g |
|- ( A e. RR+ -> ( ( ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) <-> ( ( d e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` d ) ) /\ ( n e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) ) |
| 116 |
|
elfzuzb |
|- ( n e. ( 1 ... ( |_ ` A ) ) <-> ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) |
| 117 |
|
elfzuzb |
|- ( d e. ( 1 ... n ) <-> ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) |
| 118 |
116 117
|
anbi12i |
|- ( ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. ( 1 ... n ) ) <-> ( ( n e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) /\ ( d e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` d ) ) ) ) |
| 119 |
|
elfzuzb |
|- ( d e. ( 1 ... ( |_ ` A ) ) <-> ( d e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` d ) ) ) |
| 120 |
|
elfzuzb |
|- ( n e. ( d ... ( |_ ` A ) ) <-> ( n e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) |
| 121 |
119 120
|
anbi12i |
|- ( ( d e. ( 1 ... ( |_ ` A ) ) /\ n e. ( d ... ( |_ ` A ) ) ) <-> ( ( d e. ( ZZ>= ` 1 ) /\ ( |_ ` A ) e. ( ZZ>= ` d ) ) /\ ( n e. ( ZZ>= ` d ) /\ ( |_ ` A ) e. ( ZZ>= ` n ) ) ) ) |
| 122 |
115 118 121
|
3bitr4g |
|- ( A e. RR+ -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. ( 1 ... n ) ) <-> ( d e. ( 1 ... ( |_ ` A ) ) /\ n e. ( d ... ( |_ ` A ) ) ) ) ) |
| 123 |
18
|
recnd |
|- ( ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) /\ d e. ( 1 ... n ) ) -> ( 1 / d ) e. CC ) |
| 124 |
123
|
anasss |
|- ( ( A e. RR+ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ d e. ( 1 ... n ) ) ) -> ( 1 / d ) e. CC ) |
| 125 |
14 14 15 122 124
|
fsumcom2 |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) = sum_ d e. ( 1 ... ( |_ ` A ) ) sum_ n e. ( d ... ( |_ ` A ) ) ( 1 / d ) ) |
| 126 |
89 102 125
|
3brtr4d |
|- ( A e. RR+ -> ( ( A x. sum_ d e. ( 1 ... ( |_ ` A ) ) ( 1 / d ) ) - ( |_ ` A ) ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) ) |
| 127 |
13 35 20 43 126
|
letrd |
|- ( A e. RR+ -> ( ( A x. ( log ` A ) ) - A ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) ) |
| 128 |
26 34
|
readdcld |
|- ( A e. RR+ -> ( ( log ` ( ! ` ( |_ ` A ) ) ) + ( |_ ` A ) ) e. RR ) |
| 129 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
| 130 |
129
|
adantl |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 131 |
130
|
nnrpd |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) |
| 132 |
131
|
relogcld |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. RR ) |
| 133 |
|
peano2re |
|- ( ( log ` n ) e. RR -> ( ( log ` n ) + 1 ) e. RR ) |
| 134 |
132 133
|
syl |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` n ) + 1 ) e. RR ) |
| 135 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
| 136 |
|
flid |
|- ( n e. ZZ -> ( |_ ` n ) = n ) |
| 137 |
135 136
|
syl |
|- ( n e. NN -> ( |_ ` n ) = n ) |
| 138 |
137
|
oveq2d |
|- ( n e. NN -> ( 1 ... ( |_ ` n ) ) = ( 1 ... n ) ) |
| 139 |
138
|
sumeq1d |
|- ( n e. NN -> sum_ d e. ( 1 ... ( |_ ` n ) ) ( 1 / d ) = sum_ d e. ( 1 ... n ) ( 1 / d ) ) |
| 140 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 141 |
|
nnge1 |
|- ( n e. NN -> 1 <_ n ) |
| 142 |
|
harmonicubnd |
|- ( ( n e. RR /\ 1 <_ n ) -> sum_ d e. ( 1 ... ( |_ ` n ) ) ( 1 / d ) <_ ( ( log ` n ) + 1 ) ) |
| 143 |
140 141 142
|
syl2anc |
|- ( n e. NN -> sum_ d e. ( 1 ... ( |_ ` n ) ) ( 1 / d ) <_ ( ( log ` n ) + 1 ) ) |
| 144 |
139 143
|
eqbrtrrd |
|- ( n e. NN -> sum_ d e. ( 1 ... n ) ( 1 / d ) <_ ( ( log ` n ) + 1 ) ) |
| 145 |
130 144
|
syl |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> sum_ d e. ( 1 ... n ) ( 1 / d ) <_ ( ( log ` n ) + 1 ) ) |
| 146 |
14 19 134 145
|
fsumle |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) + 1 ) ) |
| 147 |
132
|
recnd |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. CC ) |
| 148 |
|
1cnd |
|- ( ( A e. RR+ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> 1 e. CC ) |
| 149 |
14 147 148
|
fsumadd |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) + 1 ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) + sum_ n e. ( 1 ... ( |_ ` A ) ) 1 ) ) |
| 150 |
|
logfac |
|- ( ( |_ ` A ) e. NN0 -> ( log ` ( ! ` ( |_ ` A ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) ) |
| 151 |
23 150
|
syl |
|- ( A e. RR+ -> ( log ` ( ! ` ( |_ ` A ) ) ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) ) |
| 152 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` A ) ) e. Fin /\ 1 e. CC ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) 1 = ( ( # ` ( 1 ... ( |_ ` A ) ) ) x. 1 ) ) |
| 153 |
14 91 152
|
sylancl |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) 1 = ( ( # ` ( 1 ... ( |_ ` A ) ) ) x. 1 ) ) |
| 154 |
153 96 97
|
3eqtrrd |
|- ( A e. RR+ -> ( |_ ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) 1 ) |
| 155 |
151 154
|
oveq12d |
|- ( A e. RR+ -> ( ( log ` ( ! ` ( |_ ` A ) ) ) + ( |_ ` A ) ) = ( sum_ n e. ( 1 ... ( |_ ` A ) ) ( log ` n ) + sum_ n e. ( 1 ... ( |_ ` A ) ) 1 ) ) |
| 156 |
149 155
|
eqtr4d |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( log ` n ) + 1 ) = ( ( log ` ( ! ` ( |_ ` A ) ) ) + ( |_ ` A ) ) ) |
| 157 |
146 156
|
breqtrd |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) <_ ( ( log ` ( ! ` ( |_ ` A ) ) ) + ( |_ ` A ) ) ) |
| 158 |
34 8 26 42
|
leadd2dd |
|- ( A e. RR+ -> ( ( log ` ( ! ` ( |_ ` A ) ) ) + ( |_ ` A ) ) <_ ( ( log ` ( ! ` ( |_ ` A ) ) ) + A ) ) |
| 159 |
20 128 27 157 158
|
letrd |
|- ( A e. RR+ -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ d e. ( 1 ... n ) ( 1 / d ) <_ ( ( log ` ( ! ` ( |_ ` A ) ) ) + A ) ) |
| 160 |
13 20 27 127 159
|
letrd |
|- ( A e. RR+ -> ( ( A x. ( log ` A ) ) - A ) <_ ( ( log ` ( ! ` ( |_ ` A ) ) ) + A ) ) |
| 161 |
13 8 26
|
lesubaddd |
|- ( A e. RR+ -> ( ( ( ( A x. ( log ` A ) ) - A ) - A ) <_ ( log ` ( ! ` ( |_ ` A ) ) ) <-> ( ( A x. ( log ` A ) ) - A ) <_ ( ( log ` ( ! ` ( |_ ` A ) ) ) + A ) ) ) |
| 162 |
160 161
|
mpbird |
|- ( A e. RR+ -> ( ( ( A x. ( log ` A ) ) - A ) - A ) <_ ( log ` ( ! ` ( |_ ` A ) ) ) ) |
| 163 |
12 162
|
eqbrtrd |
|- ( A e. RR+ -> ( A x. ( ( log ` A ) - 2 ) ) <_ ( log ` ( ! ` ( |_ ` A ) ) ) ) |