Step |
Hyp |
Ref |
Expression |
1 |
|
lshpnel2.v |
|- V = ( Base ` W ) |
2 |
|
lshpnel2.s |
|- S = ( LSubSp ` W ) |
3 |
|
lshpnel2.n |
|- N = ( LSpan ` W ) |
4 |
|
lshpnel2.p |
|- .(+) = ( LSSum ` W ) |
5 |
|
lshpnel2.h |
|- H = ( LSHyp ` W ) |
6 |
|
lshpnel2.w |
|- ( ph -> W e. LVec ) |
7 |
|
lshpnel2.u |
|- ( ph -> U e. S ) |
8 |
|
lshpnel2.t |
|- ( ph -> U =/= V ) |
9 |
|
lshpnel2.x |
|- ( ph -> X e. V ) |
10 |
|
lshpnel2.e |
|- ( ph -> -. X e. U ) |
11 |
10
|
adantr |
|- ( ( ph /\ U e. H ) -> -. X e. U ) |
12 |
6
|
adantr |
|- ( ( ph /\ U e. H ) -> W e. LVec ) |
13 |
|
simpr |
|- ( ( ph /\ U e. H ) -> U e. H ) |
14 |
9
|
adantr |
|- ( ( ph /\ U e. H ) -> X e. V ) |
15 |
1 3 4 5 12 13 14
|
lshpnelb |
|- ( ( ph /\ U e. H ) -> ( -. X e. U <-> ( U .(+) ( N ` { X } ) ) = V ) ) |
16 |
11 15
|
mpbid |
|- ( ( ph /\ U e. H ) -> ( U .(+) ( N ` { X } ) ) = V ) |
17 |
7
|
adantr |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> U e. S ) |
18 |
8
|
adantr |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> U =/= V ) |
19 |
9
|
adantr |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> X e. V ) |
20 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
21 |
6 20
|
syl |
|- ( ph -> W e. LMod ) |
22 |
2 3
|
lspid |
|- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) |
23 |
21 7 22
|
syl2anc |
|- ( ph -> ( N ` U ) = U ) |
24 |
23
|
uneq1d |
|- ( ph -> ( ( N ` U ) u. ( N ` { X } ) ) = ( U u. ( N ` { X } ) ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( N ` ( ( N ` U ) u. ( N ` { X } ) ) ) = ( N ` ( U u. ( N ` { X } ) ) ) ) |
26 |
1 2
|
lssss |
|- ( U e. S -> U C_ V ) |
27 |
7 26
|
syl |
|- ( ph -> U C_ V ) |
28 |
9
|
snssd |
|- ( ph -> { X } C_ V ) |
29 |
1 3
|
lspun |
|- ( ( W e. LMod /\ U C_ V /\ { X } C_ V ) -> ( N ` ( U u. { X } ) ) = ( N ` ( ( N ` U ) u. ( N ` { X } ) ) ) ) |
30 |
21 27 28 29
|
syl3anc |
|- ( ph -> ( N ` ( U u. { X } ) ) = ( N ` ( ( N ` U ) u. ( N ` { X } ) ) ) ) |
31 |
1 2 3
|
lspsncl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S ) |
32 |
21 9 31
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. S ) |
33 |
2 3 4
|
lsmsp |
|- ( ( W e. LMod /\ U e. S /\ ( N ` { X } ) e. S ) -> ( U .(+) ( N ` { X } ) ) = ( N ` ( U u. ( N ` { X } ) ) ) ) |
34 |
21 7 32 33
|
syl3anc |
|- ( ph -> ( U .(+) ( N ` { X } ) ) = ( N ` ( U u. ( N ` { X } ) ) ) ) |
35 |
25 30 34
|
3eqtr4rd |
|- ( ph -> ( U .(+) ( N ` { X } ) ) = ( N ` ( U u. { X } ) ) ) |
36 |
35
|
eqeq1d |
|- ( ph -> ( ( U .(+) ( N ` { X } ) ) = V <-> ( N ` ( U u. { X } ) ) = V ) ) |
37 |
36
|
biimpa |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> ( N ` ( U u. { X } ) ) = V ) |
38 |
|
sneq |
|- ( v = X -> { v } = { X } ) |
39 |
38
|
uneq2d |
|- ( v = X -> ( U u. { v } ) = ( U u. { X } ) ) |
40 |
39
|
fveqeq2d |
|- ( v = X -> ( ( N ` ( U u. { v } ) ) = V <-> ( N ` ( U u. { X } ) ) = V ) ) |
41 |
40
|
rspcev |
|- ( ( X e. V /\ ( N ` ( U u. { X } ) ) = V ) -> E. v e. V ( N ` ( U u. { v } ) ) = V ) |
42 |
19 37 41
|
syl2anc |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> E. v e. V ( N ` ( U u. { v } ) ) = V ) |
43 |
6
|
adantr |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> W e. LVec ) |
44 |
1 3 2 5
|
islshp |
|- ( W e. LVec -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) ) |
45 |
43 44
|
syl |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) ) |
46 |
17 18 42 45
|
mpbir3and |
|- ( ( ph /\ ( U .(+) ( N ` { X } ) ) = V ) -> U e. H ) |
47 |
16 46
|
impbida |
|- ( ph -> ( U e. H <-> ( U .(+) ( N ` { X } ) ) = V ) ) |