| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpnel2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lshpnel2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lshpnel2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lshpnel2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 5 |
|
lshpnel2.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 6 |
|
lshpnel2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
lshpnel2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
|
lshpnel2.t |
⊢ ( 𝜑 → 𝑈 ≠ 𝑉 ) |
| 9 |
|
lshpnel2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
lshpnel2.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐻 ) → ¬ 𝑋 ∈ 𝑈 ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐻 ) → 𝑊 ∈ LVec ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐻 ) → 𝑈 ∈ 𝐻 ) |
| 14 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐻 ) → 𝑋 ∈ 𝑉 ) |
| 15 |
1 3 4 5 12 13 14
|
lshpnelb |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐻 ) → ( ¬ 𝑋 ∈ 𝑈 ↔ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) ) |
| 16 |
11 15
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐻 ) → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → 𝑈 ∈ 𝑆 ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → 𝑈 ≠ 𝑉 ) |
| 19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → 𝑋 ∈ 𝑉 ) |
| 20 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 21 |
6 20
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 22 |
2 3
|
lspid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
| 23 |
21 7 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) = 𝑈 ) |
| 24 |
23
|
uneq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑈 ) ∪ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑈 ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑈 ) ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) = ( 𝑁 ‘ ( 𝑈 ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 26 |
1 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
| 27 |
7 26
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
| 28 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 29 |
1 3
|
lspun |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑈 ) ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 30 |
21 27 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑈 ) ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 31 |
1 2 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 32 |
21 9 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 33 |
2 3 4
|
lsmsp |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ ( 𝑈 ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 34 |
21 7 32 33
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ ( 𝑈 ∪ ( 𝑁 ‘ { 𝑋 } ) ) ) ) |
| 35 |
25 30 34
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) ) |
| 36 |
35
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ↔ ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) = 𝑉 ) ) |
| 37 |
36
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) = 𝑉 ) |
| 38 |
|
sneq |
⊢ ( 𝑣 = 𝑋 → { 𝑣 } = { 𝑋 } ) |
| 39 |
38
|
uneq2d |
⊢ ( 𝑣 = 𝑋 → ( 𝑈 ∪ { 𝑣 } ) = ( 𝑈 ∪ { 𝑋 } ) ) |
| 40 |
39
|
fveqeq2d |
⊢ ( 𝑣 = 𝑋 → ( ( 𝑁 ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ↔ ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) = 𝑉 ) ) |
| 41 |
40
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ ( 𝑈 ∪ { 𝑋 } ) ) = 𝑉 ) → ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) |
| 42 |
19 37 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) |
| 43 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → 𝑊 ∈ LVec ) |
| 44 |
1 3 2 5
|
islshp |
⊢ ( 𝑊 ∈ LVec → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑈 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
| 46 |
17 18 42 45
|
mpbir3and |
⊢ ( ( 𝜑 ∧ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) → 𝑈 ∈ 𝐻 ) |
| 47 |
16 46
|
impbida |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐻 ↔ ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) ) |