| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1mavmul.a |
|- A = ( N Mat R ) |
| 2 |
|
1mavmul.b |
|- B = ( Base ` R ) |
| 3 |
|
1mavmul.t |
|- .x. = ( R maVecMul <. N , N >. ) |
| 4 |
|
1mavmul.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
1mavmul.n |
|- ( ph -> N e. Fin ) |
| 6 |
|
1mavmul.y |
|- ( ph -> Y e. ( B ^m N ) ) |
| 7 |
|
mavmulass.m |
|- .X. = ( R maMul <. N , N , N >. ) |
| 8 |
|
mavmulass.x |
|- ( ph -> X e. ( Base ` A ) ) |
| 9 |
|
mavmulass.z |
|- ( ph -> Z e. ( Base ` A ) ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
1 2
|
matbas2 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( B ^m ( N X. N ) ) = ( Base ` A ) ) |
| 12 |
5 4 11
|
syl2anc |
|- ( ph -> ( B ^m ( N X. N ) ) = ( Base ` A ) ) |
| 13 |
8 12
|
eleqtrrd |
|- ( ph -> X e. ( B ^m ( N X. N ) ) ) |
| 14 |
9 12
|
eleqtrrd |
|- ( ph -> Z e. ( B ^m ( N X. N ) ) ) |
| 15 |
2 4 7 5 5 5 13 14
|
mamucl |
|- ( ph -> ( X .X. Z ) e. ( B ^m ( N X. N ) ) ) |
| 16 |
15 12
|
eleqtrd |
|- ( ph -> ( X .X. Z ) e. ( Base ` A ) ) |
| 17 |
1 3 2 10 4 5 16 6
|
mavmulcl |
|- ( ph -> ( ( X .X. Z ) .x. Y ) e. ( B ^m N ) ) |
| 18 |
|
elmapi |
|- ( ( ( X .X. Z ) .x. Y ) e. ( B ^m N ) -> ( ( X .X. Z ) .x. Y ) : N --> B ) |
| 19 |
|
ffn |
|- ( ( ( X .X. Z ) .x. Y ) : N --> B -> ( ( X .X. Z ) .x. Y ) Fn N ) |
| 20 |
17 18 19
|
3syl |
|- ( ph -> ( ( X .X. Z ) .x. Y ) Fn N ) |
| 21 |
1 3 2 10 4 5 9 6
|
mavmulcl |
|- ( ph -> ( Z .x. Y ) e. ( B ^m N ) ) |
| 22 |
1 3 2 10 4 5 8 21
|
mavmulcl |
|- ( ph -> ( X .x. ( Z .x. Y ) ) e. ( B ^m N ) ) |
| 23 |
|
elmapi |
|- ( ( X .x. ( Z .x. Y ) ) e. ( B ^m N ) -> ( X .x. ( Z .x. Y ) ) : N --> B ) |
| 24 |
|
ffn |
|- ( ( X .x. ( Z .x. Y ) ) : N --> B -> ( X .x. ( Z .x. Y ) ) Fn N ) |
| 25 |
22 23 24
|
3syl |
|- ( ph -> ( X .x. ( Z .x. Y ) ) Fn N ) |
| 26 |
4
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ i e. N ) -> R e. CMnd ) |
| 28 |
5
|
adantr |
|- ( ( ph /\ i e. N ) -> N e. Fin ) |
| 29 |
4
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> R e. Ring ) |
| 30 |
|
elmapi |
|- ( X e. ( B ^m ( N X. N ) ) -> X : ( N X. N ) --> B ) |
| 31 |
13 30
|
syl |
|- ( ph -> X : ( N X. N ) --> B ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> X : ( N X. N ) --> B ) |
| 33 |
|
simplr |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> i e. N ) |
| 34 |
|
simprr |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> k e. N ) |
| 35 |
32 33 34
|
fovcdmd |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> ( i X k ) e. B ) |
| 36 |
|
elmapi |
|- ( Z e. ( B ^m ( N X. N ) ) -> Z : ( N X. N ) --> B ) |
| 37 |
14 36
|
syl |
|- ( ph -> Z : ( N X. N ) --> B ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> Z : ( N X. N ) --> B ) |
| 39 |
|
simprl |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> j e. N ) |
| 40 |
38 34 39
|
fovcdmd |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> ( k Z j ) e. B ) |
| 41 |
|
elmapi |
|- ( Y e. ( B ^m N ) -> Y : N --> B ) |
| 42 |
|
ffvelcdm |
|- ( ( Y : N --> B /\ j e. N ) -> ( Y ` j ) e. B ) |
| 43 |
42
|
ex |
|- ( Y : N --> B -> ( j e. N -> ( Y ` j ) e. B ) ) |
| 44 |
6 41 43
|
3syl |
|- ( ph -> ( j e. N -> ( Y ` j ) e. B ) ) |
| 45 |
44
|
imp |
|- ( ( ph /\ j e. N ) -> ( Y ` j ) e. B ) |
| 46 |
45
|
ad2ant2r |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> ( Y ` j ) e. B ) |
| 47 |
2 10 29 40 46
|
ringcld |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) e. B ) |
| 48 |
2 10 29 35 47
|
ringcld |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) e. B ) |
| 49 |
2 27 28 28 48
|
gsumcom3fi |
|- ( ( ph /\ i e. N ) -> ( R gsum ( j e. N |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) ) = ( R gsum ( k e. N |-> ( R gsum ( j e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) ) ) |
| 50 |
4
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> R e. Ring ) |
| 51 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> N e. Fin ) |
| 52 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> X e. ( B ^m ( N X. N ) ) ) |
| 53 |
14
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> Z e. ( B ^m ( N X. N ) ) ) |
| 54 |
|
simplr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> i e. N ) |
| 55 |
|
simpr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> j e. N ) |
| 56 |
7 2 10 50 51 51 51 52 53 54 55
|
mamufv |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( i ( X .X. Z ) j ) = ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Z j ) ) ) ) ) |
| 57 |
56
|
oveq1d |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( ( i ( X .X. Z ) j ) ( .r ` R ) ( Y ` j ) ) = ( ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Z j ) ) ) ) ( .r ` R ) ( Y ` j ) ) ) |
| 58 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 59 |
45
|
adantlr |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( Y ` j ) e. B ) |
| 60 |
4
|
adantr |
|- ( ( ph /\ i e. N ) -> R e. Ring ) |
| 61 |
60
|
ad2antrr |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> R e. Ring ) |
| 62 |
31
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> X : ( N X. N ) --> B ) |
| 63 |
|
simplr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> i e. N ) |
| 64 |
|
simpr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> k e. N ) |
| 65 |
62 63 64
|
fovcdmd |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( i X k ) e. B ) |
| 66 |
65
|
adantlr |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> ( i X k ) e. B ) |
| 67 |
37
|
adantr |
|- ( ( ph /\ i e. N ) -> Z : ( N X. N ) --> B ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> Z : ( N X. N ) --> B ) |
| 69 |
|
simpr |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> k e. N ) |
| 70 |
|
simplr |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> j e. N ) |
| 71 |
68 69 70
|
fovcdmd |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> ( k Z j ) e. B ) |
| 72 |
2 10 61 66 71
|
ringcld |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> ( ( i X k ) ( .r ` R ) ( k Z j ) ) e. B ) |
| 73 |
|
eqid |
|- ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Z j ) ) ) = ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Z j ) ) ) |
| 74 |
|
ovexd |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> ( ( i X k ) ( .r ` R ) ( k Z j ) ) e. _V ) |
| 75 |
|
fvexd |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( 0g ` R ) e. _V ) |
| 76 |
73 51 74 75
|
fsuppmptdm |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Z j ) ) ) finSupp ( 0g ` R ) ) |
| 77 |
2 58 10 50 51 59 72 76
|
gsummulc1 |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( R gsum ( k e. N |-> ( ( ( i X k ) ( .r ` R ) ( k Z j ) ) ( .r ` R ) ( Y ` j ) ) ) ) = ( ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( k Z j ) ) ) ) ( .r ` R ) ( Y ` j ) ) ) |
| 78 |
2 10
|
ringass |
|- ( ( R e. Ring /\ ( ( i X k ) e. B /\ ( k Z j ) e. B /\ ( Y ` j ) e. B ) ) -> ( ( ( i X k ) ( .r ` R ) ( k Z j ) ) ( .r ` R ) ( Y ` j ) ) = ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) |
| 79 |
29 35 40 46 78
|
syl13anc |
|- ( ( ( ph /\ i e. N ) /\ ( j e. N /\ k e. N ) ) -> ( ( ( i X k ) ( .r ` R ) ( k Z j ) ) ( .r ` R ) ( Y ` j ) ) = ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) |
| 80 |
79
|
anassrs |
|- ( ( ( ( ph /\ i e. N ) /\ j e. N ) /\ k e. N ) -> ( ( ( i X k ) ( .r ` R ) ( k Z j ) ) ( .r ` R ) ( Y ` j ) ) = ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) |
| 81 |
80
|
mpteq2dva |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( k e. N |-> ( ( ( i X k ) ( .r ` R ) ( k Z j ) ) ( .r ` R ) ( Y ` j ) ) ) = ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) |
| 82 |
81
|
oveq2d |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( R gsum ( k e. N |-> ( ( ( i X k ) ( .r ` R ) ( k Z j ) ) ( .r ` R ) ( Y ` j ) ) ) ) = ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) |
| 83 |
57 77 82
|
3eqtr2d |
|- ( ( ( ph /\ i e. N ) /\ j e. N ) -> ( ( i ( X .X. Z ) j ) ( .r ` R ) ( Y ` j ) ) = ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) |
| 84 |
83
|
mpteq2dva |
|- ( ( ph /\ i e. N ) -> ( j e. N |-> ( ( i ( X .X. Z ) j ) ( .r ` R ) ( Y ` j ) ) ) = ( j e. N |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) ) |
| 85 |
84
|
oveq2d |
|- ( ( ph /\ i e. N ) -> ( R gsum ( j e. N |-> ( ( i ( X .X. Z ) j ) ( .r ` R ) ( Y ` j ) ) ) ) = ( R gsum ( j e. N |-> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) ) ) |
| 86 |
4
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> R e. Ring ) |
| 87 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> N e. Fin ) |
| 88 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> Z e. ( Base ` A ) ) |
| 89 |
6
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> Y e. ( B ^m N ) ) |
| 90 |
1 3 2 10 86 87 88 89 64
|
mavmulfv |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( ( Z .x. Y ) ` k ) = ( R gsum ( j e. N |-> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) |
| 91 |
90
|
oveq2d |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( ( i X k ) ( .r ` R ) ( ( Z .x. Y ) ` k ) ) = ( ( i X k ) ( .r ` R ) ( R gsum ( j e. N |-> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) |
| 92 |
60
|
ad2antrr |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> R e. Ring ) |
| 93 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> Z : ( N X. N ) --> B ) |
| 94 |
|
simplr |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> k e. N ) |
| 95 |
|
simpr |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> j e. N ) |
| 96 |
93 94 95
|
fovcdmd |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> ( k Z j ) e. B ) |
| 97 |
44
|
ad2antrr |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( j e. N -> ( Y ` j ) e. B ) ) |
| 98 |
97
|
imp |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> ( Y ` j ) e. B ) |
| 99 |
2 10 92 96 98
|
ringcld |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) e. B ) |
| 100 |
|
eqid |
|- ( j e. N |-> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) = ( j e. N |-> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) |
| 101 |
|
ovexd |
|- ( ( ( ( ph /\ i e. N ) /\ k e. N ) /\ j e. N ) -> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) e. _V ) |
| 102 |
|
fvexd |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( 0g ` R ) e. _V ) |
| 103 |
100 87 101 102
|
fsuppmptdm |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( j e. N |-> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) finSupp ( 0g ` R ) ) |
| 104 |
2 58 10 86 87 65 99 103
|
gsummulc2 |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( R gsum ( j e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) = ( ( i X k ) ( .r ` R ) ( R gsum ( j e. N |-> ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) |
| 105 |
91 104
|
eqtr4d |
|- ( ( ( ph /\ i e. N ) /\ k e. N ) -> ( ( i X k ) ( .r ` R ) ( ( Z .x. Y ) ` k ) ) = ( R gsum ( j e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) |
| 106 |
105
|
mpteq2dva |
|- ( ( ph /\ i e. N ) -> ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( Z .x. Y ) ` k ) ) ) = ( k e. N |-> ( R gsum ( j e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) ) |
| 107 |
106
|
oveq2d |
|- ( ( ph /\ i e. N ) -> ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( Z .x. Y ) ` k ) ) ) ) = ( R gsum ( k e. N |-> ( R gsum ( j e. N |-> ( ( i X k ) ( .r ` R ) ( ( k Z j ) ( .r ` R ) ( Y ` j ) ) ) ) ) ) ) ) |
| 108 |
49 85 107
|
3eqtr4d |
|- ( ( ph /\ i e. N ) -> ( R gsum ( j e. N |-> ( ( i ( X .X. Z ) j ) ( .r ` R ) ( Y ` j ) ) ) ) = ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( Z .x. Y ) ` k ) ) ) ) ) |
| 109 |
16
|
adantr |
|- ( ( ph /\ i e. N ) -> ( X .X. Z ) e. ( Base ` A ) ) |
| 110 |
6
|
adantr |
|- ( ( ph /\ i e. N ) -> Y e. ( B ^m N ) ) |
| 111 |
|
simpr |
|- ( ( ph /\ i e. N ) -> i e. N ) |
| 112 |
1 3 2 10 60 28 109 110 111
|
mavmulfv |
|- ( ( ph /\ i e. N ) -> ( ( ( X .X. Z ) .x. Y ) ` i ) = ( R gsum ( j e. N |-> ( ( i ( X .X. Z ) j ) ( .r ` R ) ( Y ` j ) ) ) ) ) |
| 113 |
8
|
adantr |
|- ( ( ph /\ i e. N ) -> X e. ( Base ` A ) ) |
| 114 |
21
|
adantr |
|- ( ( ph /\ i e. N ) -> ( Z .x. Y ) e. ( B ^m N ) ) |
| 115 |
1 3 2 10 60 28 113 114 111
|
mavmulfv |
|- ( ( ph /\ i e. N ) -> ( ( X .x. ( Z .x. Y ) ) ` i ) = ( R gsum ( k e. N |-> ( ( i X k ) ( .r ` R ) ( ( Z .x. Y ) ` k ) ) ) ) ) |
| 116 |
108 112 115
|
3eqtr4d |
|- ( ( ph /\ i e. N ) -> ( ( ( X .X. Z ) .x. Y ) ` i ) = ( ( X .x. ( Z .x. Y ) ) ` i ) ) |
| 117 |
20 25 116
|
eqfnfvd |
|- ( ph -> ( ( X .X. Z ) .x. Y ) = ( X .x. ( Z .x. Y ) ) ) |