| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm3.22 |
|- ( ( N e. NN /\ X e. ZZ ) -> ( X e. ZZ /\ N e. NN ) ) |
| 2 |
1
|
3adant3 |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( X e. ZZ /\ N e. NN ) ) |
| 3 |
|
mod0mul |
|- ( ( X e. ZZ /\ N e. NN ) -> ( ( X mod N ) = 0 -> E. z e. ZZ X = ( z x. N ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( ( X mod N ) = 0 -> E. z e. ZZ X = ( z x. N ) ) ) |
| 5 |
|
simpr |
|- ( ( ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) /\ z e. ZZ ) /\ X = ( z x. N ) ) -> X = ( z x. N ) ) |
| 6 |
|
fveq2 |
|- ( X = ( z x. N ) -> ( abs ` X ) = ( abs ` ( z x. N ) ) ) |
| 7 |
6
|
adantl |
|- ( ( ( N e. NN /\ z e. ZZ ) /\ X = ( z x. N ) ) -> ( abs ` X ) = ( abs ` ( z x. N ) ) ) |
| 8 |
7
|
breq1d |
|- ( ( ( N e. NN /\ z e. ZZ ) /\ X = ( z x. N ) ) -> ( ( abs ` X ) < N <-> ( abs ` ( z x. N ) ) < N ) ) |
| 9 |
|
zcn |
|- ( z e. ZZ -> z e. CC ) |
| 10 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 11 |
|
absmul |
|- ( ( z e. CC /\ N e. CC ) -> ( abs ` ( z x. N ) ) = ( ( abs ` z ) x. ( abs ` N ) ) ) |
| 12 |
9 10 11
|
syl2anr |
|- ( ( N e. NN /\ z e. ZZ ) -> ( abs ` ( z x. N ) ) = ( ( abs ` z ) x. ( abs ` N ) ) ) |
| 13 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 14 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 15 |
14
|
nn0ge0d |
|- ( N e. NN -> 0 <_ N ) |
| 16 |
13 15
|
absidd |
|- ( N e. NN -> ( abs ` N ) = N ) |
| 17 |
16
|
adantr |
|- ( ( N e. NN /\ z e. ZZ ) -> ( abs ` N ) = N ) |
| 18 |
17
|
oveq2d |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( abs ` z ) x. ( abs ` N ) ) = ( ( abs ` z ) x. N ) ) |
| 19 |
12 18
|
eqtrd |
|- ( ( N e. NN /\ z e. ZZ ) -> ( abs ` ( z x. N ) ) = ( ( abs ` z ) x. N ) ) |
| 20 |
19
|
breq1d |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( abs ` ( z x. N ) ) < N <-> ( ( abs ` z ) x. N ) < N ) ) |
| 21 |
9
|
abscld |
|- ( z e. ZZ -> ( abs ` z ) e. RR ) |
| 22 |
21
|
adantl |
|- ( ( N e. NN /\ z e. ZZ ) -> ( abs ` z ) e. RR ) |
| 23 |
13
|
adantr |
|- ( ( N e. NN /\ z e. ZZ ) -> N e. RR ) |
| 24 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 25 |
13 24
|
jca |
|- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 26 |
25
|
adantr |
|- ( ( N e. NN /\ z e. ZZ ) -> ( N e. RR /\ 0 < N ) ) |
| 27 |
|
ltmuldiv |
|- ( ( ( abs ` z ) e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( ( abs ` z ) x. N ) < N <-> ( abs ` z ) < ( N / N ) ) ) |
| 28 |
22 23 26 27
|
syl3anc |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( ( abs ` z ) x. N ) < N <-> ( abs ` z ) < ( N / N ) ) ) |
| 29 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 30 |
10 29
|
dividd |
|- ( N e. NN -> ( N / N ) = 1 ) |
| 31 |
30
|
adantr |
|- ( ( N e. NN /\ z e. ZZ ) -> ( N / N ) = 1 ) |
| 32 |
31
|
breq2d |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( abs ` z ) < ( N / N ) <-> ( abs ` z ) < 1 ) ) |
| 33 |
28 32
|
bitrd |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( ( abs ` z ) x. N ) < N <-> ( abs ` z ) < 1 ) ) |
| 34 |
|
zabs0b |
|- ( z e. ZZ -> ( ( abs ` z ) < 1 <-> z = 0 ) ) |
| 35 |
34
|
adantl |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( abs ` z ) < 1 <-> z = 0 ) ) |
| 36 |
|
oveq1 |
|- ( z = 0 -> ( z x. N ) = ( 0 x. N ) ) |
| 37 |
10
|
mul02d |
|- ( N e. NN -> ( 0 x. N ) = 0 ) |
| 38 |
36 37
|
sylan9eqr |
|- ( ( N e. NN /\ z = 0 ) -> ( z x. N ) = 0 ) |
| 39 |
38
|
ex |
|- ( N e. NN -> ( z = 0 -> ( z x. N ) = 0 ) ) |
| 40 |
39
|
adantr |
|- ( ( N e. NN /\ z e. ZZ ) -> ( z = 0 -> ( z x. N ) = 0 ) ) |
| 41 |
35 40
|
sylbid |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( abs ` z ) < 1 -> ( z x. N ) = 0 ) ) |
| 42 |
33 41
|
sylbid |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( ( abs ` z ) x. N ) < N -> ( z x. N ) = 0 ) ) |
| 43 |
20 42
|
sylbid |
|- ( ( N e. NN /\ z e. ZZ ) -> ( ( abs ` ( z x. N ) ) < N -> ( z x. N ) = 0 ) ) |
| 44 |
43
|
adantr |
|- ( ( ( N e. NN /\ z e. ZZ ) /\ X = ( z x. N ) ) -> ( ( abs ` ( z x. N ) ) < N -> ( z x. N ) = 0 ) ) |
| 45 |
8 44
|
sylbid |
|- ( ( ( N e. NN /\ z e. ZZ ) /\ X = ( z x. N ) ) -> ( ( abs ` X ) < N -> ( z x. N ) = 0 ) ) |
| 46 |
45
|
expl |
|- ( N e. NN -> ( ( z e. ZZ /\ X = ( z x. N ) ) -> ( ( abs ` X ) < N -> ( z x. N ) = 0 ) ) ) |
| 47 |
46
|
adantr |
|- ( ( N e. NN /\ X e. ZZ ) -> ( ( z e. ZZ /\ X = ( z x. N ) ) -> ( ( abs ` X ) < N -> ( z x. N ) = 0 ) ) ) |
| 48 |
47
|
com23 |
|- ( ( N e. NN /\ X e. ZZ ) -> ( ( abs ` X ) < N -> ( ( z e. ZZ /\ X = ( z x. N ) ) -> ( z x. N ) = 0 ) ) ) |
| 49 |
48
|
3impia |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( ( z e. ZZ /\ X = ( z x. N ) ) -> ( z x. N ) = 0 ) ) |
| 50 |
49
|
impl |
|- ( ( ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) /\ z e. ZZ ) /\ X = ( z x. N ) ) -> ( z x. N ) = 0 ) |
| 51 |
5 50
|
eqtrd |
|- ( ( ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) /\ z e. ZZ ) /\ X = ( z x. N ) ) -> X = 0 ) |
| 52 |
51
|
ex |
|- ( ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) /\ z e. ZZ ) -> ( X = ( z x. N ) -> X = 0 ) ) |
| 53 |
52
|
rexlimdva |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( E. z e. ZZ X = ( z x. N ) -> X = 0 ) ) |
| 54 |
4 53
|
syld |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( ( X mod N ) = 0 -> X = 0 ) ) |
| 55 |
|
oveq1 |
|- ( X = 0 -> ( X mod N ) = ( 0 mod N ) ) |
| 56 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 57 |
|
0mod |
|- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
| 58 |
56 57
|
syl |
|- ( N e. NN -> ( 0 mod N ) = 0 ) |
| 59 |
58
|
3ad2ant1 |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( 0 mod N ) = 0 ) |
| 60 |
55 59
|
sylan9eqr |
|- ( ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) /\ X = 0 ) -> ( X mod N ) = 0 ) |
| 61 |
60
|
ex |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( X = 0 -> ( X mod N ) = 0 ) ) |
| 62 |
54 61
|
impbid |
|- ( ( N e. NN /\ X e. ZZ /\ ( abs ` X ) < N ) -> ( ( X mod N ) = 0 <-> X = 0 ) ) |