Step |
Hyp |
Ref |
Expression |
1 |
|
nmcfnex.1 |
|- T e. LinFn |
2 |
|
nmcfnex.2 |
|- T e. ContFn |
3 |
|
ax-hv0cl |
|- 0h e. ~H |
4 |
|
1rp |
|- 1 e. RR+ |
5 |
|
cnfnc |
|- ( ( T e. ContFn /\ 0h e. ~H /\ 1 e. RR+ ) -> E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) < 1 ) ) |
6 |
2 3 4 5
|
mp3an |
|- E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) < 1 ) |
7 |
|
hvsub0 |
|- ( z e. ~H -> ( z -h 0h ) = z ) |
8 |
7
|
fveq2d |
|- ( z e. ~H -> ( normh ` ( z -h 0h ) ) = ( normh ` z ) ) |
9 |
8
|
breq1d |
|- ( z e. ~H -> ( ( normh ` ( z -h 0h ) ) < y <-> ( normh ` z ) < y ) ) |
10 |
1
|
lnfn0i |
|- ( T ` 0h ) = 0 |
11 |
10
|
oveq2i |
|- ( ( T ` z ) - ( T ` 0h ) ) = ( ( T ` z ) - 0 ) |
12 |
1
|
lnfnfi |
|- T : ~H --> CC |
13 |
12
|
ffvelrni |
|- ( z e. ~H -> ( T ` z ) e. CC ) |
14 |
13
|
subid1d |
|- ( z e. ~H -> ( ( T ` z ) - 0 ) = ( T ` z ) ) |
15 |
11 14
|
eqtrid |
|- ( z e. ~H -> ( ( T ` z ) - ( T ` 0h ) ) = ( T ` z ) ) |
16 |
15
|
fveq2d |
|- ( z e. ~H -> ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) = ( abs ` ( T ` z ) ) ) |
17 |
16
|
breq1d |
|- ( z e. ~H -> ( ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) < 1 <-> ( abs ` ( T ` z ) ) < 1 ) ) |
18 |
9 17
|
imbi12d |
|- ( z e. ~H -> ( ( ( normh ` ( z -h 0h ) ) < y -> ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) < 1 ) <-> ( ( normh ` z ) < y -> ( abs ` ( T ` z ) ) < 1 ) ) ) |
19 |
18
|
ralbiia |
|- ( A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) < 1 ) <-> A. z e. ~H ( ( normh ` z ) < y -> ( abs ` ( T ` z ) ) < 1 ) ) |
20 |
19
|
rexbii |
|- ( E. y e. RR+ A. z e. ~H ( ( normh ` ( z -h 0h ) ) < y -> ( abs ` ( ( T ` z ) - ( T ` 0h ) ) ) < 1 ) <-> E. y e. RR+ A. z e. ~H ( ( normh ` z ) < y -> ( abs ` ( T ` z ) ) < 1 ) ) |
21 |
6 20
|
mpbi |
|- E. y e. RR+ A. z e. ~H ( ( normh ` z ) < y -> ( abs ` ( T ` z ) ) < 1 ) |
22 |
|
nmfnval |
|- ( T : ~H --> CC -> ( normfn ` T ) = sup ( { m | E. x e. ~H ( ( normh ` x ) <_ 1 /\ m = ( abs ` ( T ` x ) ) ) } , RR* , < ) ) |
23 |
12 22
|
ax-mp |
|- ( normfn ` T ) = sup ( { m | E. x e. ~H ( ( normh ` x ) <_ 1 /\ m = ( abs ` ( T ` x ) ) ) } , RR* , < ) |
24 |
12
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. CC ) |
25 |
24
|
abscld |
|- ( x e. ~H -> ( abs ` ( T ` x ) ) e. RR ) |
26 |
10
|
fveq2i |
|- ( abs ` ( T ` 0h ) ) = ( abs ` 0 ) |
27 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
28 |
26 27
|
eqtri |
|- ( abs ` ( T ` 0h ) ) = 0 |
29 |
|
rpcn |
|- ( ( y / 2 ) e. RR+ -> ( y / 2 ) e. CC ) |
30 |
1
|
lnfnmuli |
|- ( ( ( y / 2 ) e. CC /\ x e. ~H ) -> ( T ` ( ( y / 2 ) .h x ) ) = ( ( y / 2 ) x. ( T ` x ) ) ) |
31 |
29 30
|
sylan |
|- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( T ` ( ( y / 2 ) .h x ) ) = ( ( y / 2 ) x. ( T ` x ) ) ) |
32 |
31
|
fveq2d |
|- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( abs ` ( T ` ( ( y / 2 ) .h x ) ) ) = ( abs ` ( ( y / 2 ) x. ( T ` x ) ) ) ) |
33 |
|
absmul |
|- ( ( ( y / 2 ) e. CC /\ ( T ` x ) e. CC ) -> ( abs ` ( ( y / 2 ) x. ( T ` x ) ) ) = ( ( abs ` ( y / 2 ) ) x. ( abs ` ( T ` x ) ) ) ) |
34 |
29 24 33
|
syl2an |
|- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( abs ` ( ( y / 2 ) x. ( T ` x ) ) ) = ( ( abs ` ( y / 2 ) ) x. ( abs ` ( T ` x ) ) ) ) |
35 |
|
rpre |
|- ( ( y / 2 ) e. RR+ -> ( y / 2 ) e. RR ) |
36 |
|
rpge0 |
|- ( ( y / 2 ) e. RR+ -> 0 <_ ( y / 2 ) ) |
37 |
35 36
|
absidd |
|- ( ( y / 2 ) e. RR+ -> ( abs ` ( y / 2 ) ) = ( y / 2 ) ) |
38 |
37
|
adantr |
|- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( abs ` ( y / 2 ) ) = ( y / 2 ) ) |
39 |
38
|
oveq1d |
|- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( ( abs ` ( y / 2 ) ) x. ( abs ` ( T ` x ) ) ) = ( ( y / 2 ) x. ( abs ` ( T ` x ) ) ) ) |
40 |
32 34 39
|
3eqtrrd |
|- ( ( ( y / 2 ) e. RR+ /\ x e. ~H ) -> ( ( y / 2 ) x. ( abs ` ( T ` x ) ) ) = ( abs ` ( T ` ( ( y / 2 ) .h x ) ) ) ) |
41 |
21 23 25 28 40
|
nmcexi |
|- ( normfn ` T ) e. RR |