Metamath Proof Explorer


Theorem nmcfnexi

Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion nmcfnexi ( normfn𝑇 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 nmcfnex.1 𝑇 ∈ LinFn
2 nmcfnex.2 𝑇 ∈ ContFn
3 ax-hv0cl 0 ∈ ℋ
4 1rp 1 ∈ ℝ+
5 cnfnc ( ( 𝑇 ∈ ContFn ∧ 0 ∈ ℋ ∧ 1 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℋ ( ( norm ‘ ( 𝑧 0 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) < 1 ) )
6 2 3 4 5 mp3an 𝑦 ∈ ℝ+𝑧 ∈ ℋ ( ( norm ‘ ( 𝑧 0 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) < 1 )
7 hvsub0 ( 𝑧 ∈ ℋ → ( 𝑧 0 ) = 𝑧 )
8 7 fveq2d ( 𝑧 ∈ ℋ → ( norm ‘ ( 𝑧 0 ) ) = ( norm𝑧 ) )
9 8 breq1d ( 𝑧 ∈ ℋ → ( ( norm ‘ ( 𝑧 0 ) ) < 𝑦 ↔ ( norm𝑧 ) < 𝑦 ) )
10 1 lnfn0i ( 𝑇 ‘ 0 ) = 0
11 10 oveq2i ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) = ( ( 𝑇𝑧 ) − 0 )
12 1 lnfnfi 𝑇 : ℋ ⟶ ℂ
13 12 ffvelrni ( 𝑧 ∈ ℋ → ( 𝑇𝑧 ) ∈ ℂ )
14 13 subid1d ( 𝑧 ∈ ℋ → ( ( 𝑇𝑧 ) − 0 ) = ( 𝑇𝑧 ) )
15 11 14 eqtrid ( 𝑧 ∈ ℋ → ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) = ( 𝑇𝑧 ) )
16 15 fveq2d ( 𝑧 ∈ ℋ → ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) = ( abs ‘ ( 𝑇𝑧 ) ) )
17 16 breq1d ( 𝑧 ∈ ℋ → ( ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) < 1 ↔ ( abs ‘ ( 𝑇𝑧 ) ) < 1 ) )
18 9 17 imbi12d ( 𝑧 ∈ ℋ → ( ( ( norm ‘ ( 𝑧 0 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) < 1 ) ↔ ( ( norm𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇𝑧 ) ) < 1 ) ) )
19 18 ralbiia ( ∀ 𝑧 ∈ ℋ ( ( norm ‘ ( 𝑧 0 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) < 1 ) ↔ ∀ 𝑧 ∈ ℋ ( ( norm𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇𝑧 ) ) < 1 ) )
20 19 rexbii ( ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℋ ( ( norm ‘ ( 𝑧 0 ) ) < 𝑦 → ( abs ‘ ( ( 𝑇𝑧 ) − ( 𝑇 ‘ 0 ) ) ) < 1 ) ↔ ∃ 𝑦 ∈ ℝ+𝑧 ∈ ℋ ( ( norm𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇𝑧 ) ) < 1 ) )
21 6 20 mpbi 𝑦 ∈ ℝ+𝑧 ∈ ℋ ( ( norm𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇𝑧 ) ) < 1 )
22 nmfnval ( 𝑇 : ℋ ⟶ ℂ → ( normfn𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( norm𝑥 ) ≤ 1 ∧ 𝑚 = ( abs ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) )
23 12 22 ax-mp ( normfn𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( norm𝑥 ) ≤ 1 ∧ 𝑚 = ( abs ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < )
24 12 ffvelrni ( 𝑥 ∈ ℋ → ( 𝑇𝑥 ) ∈ ℂ )
25 24 abscld ( 𝑥 ∈ ℋ → ( abs ‘ ( 𝑇𝑥 ) ) ∈ ℝ )
26 10 fveq2i ( abs ‘ ( 𝑇 ‘ 0 ) ) = ( abs ‘ 0 )
27 abs0 ( abs ‘ 0 ) = 0
28 26 27 eqtri ( abs ‘ ( 𝑇 ‘ 0 ) ) = 0
29 rpcn ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℂ )
30 1 lnfnmuli ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑦 / 2 ) · 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( 𝑇𝑥 ) ) )
31 29 30 sylan ( ( ( 𝑦 / 2 ) ∈ ℝ+𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑦 / 2 ) · 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( 𝑇𝑥 ) ) )
32 31 fveq2d ( ( ( 𝑦 / 2 ) ∈ ℝ+𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) · 𝑥 ) ) ) = ( abs ‘ ( ( 𝑦 / 2 ) · ( 𝑇𝑥 ) ) ) )
33 absmul ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ ( 𝑇𝑥 ) ∈ ℂ ) → ( abs ‘ ( ( 𝑦 / 2 ) · ( 𝑇𝑥 ) ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( abs ‘ ( 𝑇𝑥 ) ) ) )
34 29 24 33 syl2an ( ( ( 𝑦 / 2 ) ∈ ℝ+𝑥 ∈ ℋ ) → ( abs ‘ ( ( 𝑦 / 2 ) · ( 𝑇𝑥 ) ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( abs ‘ ( 𝑇𝑥 ) ) ) )
35 rpre ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ )
36 rpge0 ( ( 𝑦 / 2 ) ∈ ℝ+ → 0 ≤ ( 𝑦 / 2 ) )
37 35 36 absidd ( ( 𝑦 / 2 ) ∈ ℝ+ → ( abs ‘ ( 𝑦 / 2 ) ) = ( 𝑦 / 2 ) )
38 37 adantr ( ( ( 𝑦 / 2 ) ∈ ℝ+𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑦 / 2 ) ) = ( 𝑦 / 2 ) )
39 38 oveq1d ( ( ( 𝑦 / 2 ) ∈ ℝ+𝑥 ∈ ℋ ) → ( ( abs ‘ ( 𝑦 / 2 ) ) · ( abs ‘ ( 𝑇𝑥 ) ) ) = ( ( 𝑦 / 2 ) · ( abs ‘ ( 𝑇𝑥 ) ) ) )
40 32 34 39 3eqtrrd ( ( ( 𝑦 / 2 ) ∈ ℝ+𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( abs ‘ ( 𝑇𝑥 ) ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) · 𝑥 ) ) ) )
41 21 23 25 28 40 nmcexi ( normfn𝑇 ) ∈ ℝ