Step |
Hyp |
Ref |
Expression |
1 |
|
nmcfnex.1 |
⊢ 𝑇 ∈ LinFn |
2 |
|
nmcfnex.2 |
⊢ 𝑇 ∈ ContFn |
3 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
4 |
|
1rp |
⊢ 1 ∈ ℝ+ |
5 |
|
cnfnc |
⊢ ( ( 𝑇 ∈ ContFn ∧ 0ℎ ∈ ℋ ∧ 1 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) < 1 ) ) |
6 |
2 3 4 5
|
mp3an |
⊢ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) < 1 ) |
7 |
|
hvsub0 |
⊢ ( 𝑧 ∈ ℋ → ( 𝑧 −ℎ 0ℎ ) = 𝑧 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) = ( normℎ ‘ 𝑧 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑧 ∈ ℋ → ( ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) < 𝑦 ↔ ( normℎ ‘ 𝑧 ) < 𝑦 ) ) |
10 |
1
|
lnfn0i |
⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
11 |
10
|
oveq2i |
⊢ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) = ( ( 𝑇 ‘ 𝑧 ) − 0 ) |
12 |
1
|
lnfnfi |
⊢ 𝑇 : ℋ ⟶ ℂ |
13 |
12
|
ffvelrni |
⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℂ ) |
14 |
13
|
subid1d |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑇 ‘ 𝑧 ) − 0 ) = ( 𝑇 ‘ 𝑧 ) ) |
15 |
11 14
|
eqtrid |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) = ( 𝑇 ‘ 𝑧 ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑧 ∈ ℋ → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) = ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑧 ∈ ℋ → ( ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) < 1 ↔ ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) |
18 |
9 17
|
imbi12d |
⊢ ( 𝑧 ∈ ℋ → ( ( ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) < 1 ) ↔ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ) |
19 |
18
|
ralbiia |
⊢ ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) < 1 ) ↔ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) |
20 |
19
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ ( 𝑧 −ℎ 0ℎ ) ) < 𝑦 → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) − ( 𝑇 ‘ 0ℎ ) ) ) < 1 ) ↔ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) |
21 |
6 20
|
mpbi |
⊢ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) |
22 |
|
nmfnval |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) |
23 |
12 22
|
ax-mp |
⊢ ( normfn ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) |
24 |
12
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℂ ) |
25 |
24
|
abscld |
⊢ ( 𝑥 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
26 |
10
|
fveq2i |
⊢ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) = ( abs ‘ 0 ) |
27 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
28 |
26 27
|
eqtri |
⊢ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) = 0 |
29 |
|
rpcn |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℂ ) |
30 |
1
|
lnfnmuli |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( 𝑇 ‘ 𝑥 ) ) ) |
31 |
29 30
|
sylan |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( 𝑇 ‘ 𝑥 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) = ( abs ‘ ( ( 𝑦 / 2 ) · ( 𝑇 ‘ 𝑥 ) ) ) ) |
33 |
|
absmul |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℂ ) → ( abs ‘ ( ( 𝑦 / 2 ) · ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
34 |
29 24 33
|
syl2an |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( ( 𝑦 / 2 ) · ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
35 |
|
rpre |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) |
36 |
|
rpge0 |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → 0 ≤ ( 𝑦 / 2 ) ) |
37 |
35 36
|
absidd |
⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( abs ‘ ( 𝑦 / 2 ) ) = ( 𝑦 / 2 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑦 / 2 ) ) = ( 𝑦 / 2 ) ) |
39 |
38
|
oveq1d |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 𝑦 / 2 ) ) · ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑦 / 2 ) · ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
40 |
32 34 39
|
3eqtrrd |
⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( abs ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) |
41 |
21 23 25 28 40
|
nmcexi |
⊢ ( normfn ‘ 𝑇 ) ∈ ℝ |