| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoco.1 |
|- N = ( S normOp U ) |
| 2 |
|
nmoco.2 |
|- L = ( T normOp U ) |
| 3 |
|
nmoco.3 |
|- M = ( S normOp T ) |
| 4 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 5 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
| 6 |
|
eqid |
|- ( norm ` U ) = ( norm ` U ) |
| 7 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 8 |
|
nghmrcl1 |
|- ( G e. ( S NGHom T ) -> S e. NrmGrp ) |
| 9 |
8
|
adantl |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> S e. NrmGrp ) |
| 10 |
|
nghmrcl2 |
|- ( F e. ( T NGHom U ) -> U e. NrmGrp ) |
| 11 |
10
|
adantr |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> U e. NrmGrp ) |
| 12 |
|
nghmghm |
|- ( F e. ( T NGHom U ) -> F e. ( T GrpHom U ) ) |
| 13 |
|
nghmghm |
|- ( G e. ( S NGHom T ) -> G e. ( S GrpHom T ) ) |
| 14 |
|
ghmco |
|- ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 15 |
12 13 14
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) ) |
| 16 |
2
|
nghmcl |
|- ( F e. ( T NGHom U ) -> ( L ` F ) e. RR ) |
| 17 |
3
|
nghmcl |
|- ( G e. ( S NGHom T ) -> ( M ` G ) e. RR ) |
| 18 |
|
remulcl |
|- ( ( ( L ` F ) e. RR /\ ( M ` G ) e. RR ) -> ( ( L ` F ) x. ( M ` G ) ) e. RR ) |
| 19 |
16 17 18
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( ( L ` F ) x. ( M ` G ) ) e. RR ) |
| 20 |
|
nghmrcl1 |
|- ( F e. ( T NGHom U ) -> T e. NrmGrp ) |
| 21 |
2
|
nmoge0 |
|- ( ( T e. NrmGrp /\ U e. NrmGrp /\ F e. ( T GrpHom U ) ) -> 0 <_ ( L ` F ) ) |
| 22 |
20 10 12 21
|
syl3anc |
|- ( F e. ( T NGHom U ) -> 0 <_ ( L ` F ) ) |
| 23 |
16 22
|
jca |
|- ( F e. ( T NGHom U ) -> ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) ) |
| 24 |
|
nghmrcl2 |
|- ( G e. ( S NGHom T ) -> T e. NrmGrp ) |
| 25 |
3
|
nmoge0 |
|- ( ( S e. NrmGrp /\ T e. NrmGrp /\ G e. ( S GrpHom T ) ) -> 0 <_ ( M ` G ) ) |
| 26 |
8 24 13 25
|
syl3anc |
|- ( G e. ( S NGHom T ) -> 0 <_ ( M ` G ) ) |
| 27 |
17 26
|
jca |
|- ( G e. ( S NGHom T ) -> ( ( M ` G ) e. RR /\ 0 <_ ( M ` G ) ) ) |
| 28 |
|
mulge0 |
|- ( ( ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) /\ ( ( M ` G ) e. RR /\ 0 <_ ( M ` G ) ) ) -> 0 <_ ( ( L ` F ) x. ( M ` G ) ) ) |
| 29 |
23 27 28
|
syl2an |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> 0 <_ ( ( L ` F ) x. ( M ` G ) ) ) |
| 30 |
10
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> U e. NrmGrp ) |
| 31 |
12
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F e. ( T GrpHom U ) ) |
| 32 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 33 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 34 |
32 33
|
ghmf |
|- ( F e. ( T GrpHom U ) -> F : ( Base ` T ) --> ( Base ` U ) ) |
| 35 |
31 34
|
syl |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F : ( Base ` T ) --> ( Base ` U ) ) |
| 36 |
13
|
ad2antlr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G e. ( S GrpHom T ) ) |
| 37 |
4 32
|
ghmf |
|- ( G e. ( S GrpHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 38 |
36 37
|
syl |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
| 39 |
|
simprl |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> x e. ( Base ` S ) ) |
| 40 |
38 39
|
ffvelcdmd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( G ` x ) e. ( Base ` T ) ) |
| 41 |
35 40
|
ffvelcdmd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( F ` ( G ` x ) ) e. ( Base ` U ) ) |
| 42 |
33 6
|
nmcl |
|- ( ( U e. NrmGrp /\ ( F ` ( G ` x ) ) e. ( Base ` U ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) e. RR ) |
| 43 |
30 41 42
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) e. RR ) |
| 44 |
16
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( L ` F ) e. RR ) |
| 45 |
20
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> T e. NrmGrp ) |
| 46 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
| 47 |
32 46
|
nmcl |
|- ( ( T e. NrmGrp /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( G ` x ) ) e. RR ) |
| 48 |
45 40 47
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( G ` x ) ) e. RR ) |
| 49 |
44 48
|
remulcld |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) e. RR ) |
| 50 |
17
|
ad2antlr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( M ` G ) e. RR ) |
| 51 |
4 5
|
nmcl |
|- ( ( S e. NrmGrp /\ x e. ( Base ` S ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
| 52 |
8 51
|
sylan |
|- ( ( G e. ( S NGHom T ) /\ x e. ( Base ` S ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
| 53 |
52
|
ad2ant2lr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. RR ) |
| 54 |
50 53
|
remulcld |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) e. RR ) |
| 55 |
44 54
|
remulcld |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) e. RR ) |
| 56 |
|
simpll |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> F e. ( T NGHom U ) ) |
| 57 |
2 32 46 6
|
nmoi |
|- ( ( F e. ( T NGHom U ) /\ ( G ` x ) e. ( Base ` T ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) ) |
| 58 |
56 40 57
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) ) |
| 59 |
23
|
ad2antrr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) ) |
| 60 |
3 4 5 46
|
nmoi |
|- ( ( G e. ( S NGHom T ) /\ x e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) |
| 61 |
60
|
ad2ant2lr |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) |
| 62 |
|
lemul2a |
|- ( ( ( ( ( norm ` T ) ` ( G ` x ) ) e. RR /\ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) e. RR /\ ( ( L ` F ) e. RR /\ 0 <_ ( L ` F ) ) ) /\ ( ( norm ` T ) ` ( G ` x ) ) <_ ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) -> ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
| 63 |
48 54 59 61 62
|
syl31anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( L ` F ) x. ( ( norm ` T ) ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
| 64 |
43 49 55 58 63
|
letrd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) <_ ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
| 65 |
|
fvco3 |
|- ( ( G : ( Base ` S ) --> ( Base ` T ) /\ x e. ( Base ` S ) ) -> ( ( F o. G ) ` x ) = ( F ` ( G ` x ) ) ) |
| 66 |
38 39 65
|
syl2anc |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( F o. G ) ` x ) = ( F ` ( G ` x ) ) ) |
| 67 |
66
|
fveq2d |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( ( F o. G ) ` x ) ) = ( ( norm ` U ) ` ( F ` ( G ` x ) ) ) ) |
| 68 |
44
|
recnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( L ` F ) e. CC ) |
| 69 |
50
|
recnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( M ` G ) e. CC ) |
| 70 |
53
|
recnd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` S ) ` x ) e. CC ) |
| 71 |
68 69 70
|
mulassd |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( ( L ` F ) x. ( M ` G ) ) x. ( ( norm ` S ) ` x ) ) = ( ( L ` F ) x. ( ( M ` G ) x. ( ( norm ` S ) ` x ) ) ) ) |
| 72 |
64 67 71
|
3brtr4d |
|- ( ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) /\ ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) -> ( ( norm ` U ) ` ( ( F o. G ) ` x ) ) <_ ( ( ( L ` F ) x. ( M ` G ) ) x. ( ( norm ` S ) ` x ) ) ) |
| 73 |
1 4 5 6 7 9 11 15 19 29 72
|
nmolb2d |
|- ( ( F e. ( T NGHom U ) /\ G e. ( S NGHom T ) ) -> ( N ` ( F o. G ) ) <_ ( ( L ` F ) x. ( M ` G ) ) ) |