| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( N e. Odd -> N e. ZZ ) | 
						
							| 2 |  | odd2np1ALTV |  |-  ( N e. ZZ -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. Odd -> ( N e. Odd <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 4 | 3 | ibi |  |-  ( N e. Odd -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( A e. CC /\ N e. NN /\ N e. Odd ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A e. CC ) | 
						
							| 7 |  | simprr |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 8 |  | simpl2 |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> N e. NN ) | 
						
							| 9 | 8 | nncnd |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> N e. CC ) | 
						
							| 10 |  | 1cnd |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 1 e. CC ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 |  | simprl |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. ZZ ) | 
						
							| 13 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 14 | 11 12 13 | sylancr |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 15 | 14 | zcnd |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. CC ) | 
						
							| 16 | 9 10 15 | subadd2d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 17 | 7 16 | mpbird |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( N - 1 ) = ( 2 x. n ) ) | 
						
							| 18 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 19 | 8 18 | syl |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( N - 1 ) e. NN0 ) | 
						
							| 20 | 17 19 | eqeltrrd |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. NN0 ) | 
						
							| 21 | 6 20 | expcld |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) e. CC ) | 
						
							| 22 | 21 6 | mulneg2d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = -u ( ( A ^ ( 2 x. n ) ) x. A ) ) | 
						
							| 23 |  | sqneg |  |-  ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 24 | 6 23 | syl |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ 2 ) ^ n ) = ( ( A ^ 2 ) ^ n ) ) | 
						
							| 26 | 6 | negcld |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A e. CC ) | 
						
							| 27 |  | 2rp |  |-  2 e. RR+ | 
						
							| 28 | 27 | a1i |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 2 e. RR+ ) | 
						
							| 29 | 12 | zred |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. RR ) | 
						
							| 30 | 20 | nn0ge0d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 0 <_ ( 2 x. n ) ) | 
						
							| 31 | 28 29 30 | prodge0rd |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 0 <_ n ) | 
						
							| 32 |  | elnn0z |  |-  ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) | 
						
							| 33 | 12 31 32 | sylanbrc |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. NN0 ) | 
						
							| 34 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 35 | 34 | a1i |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 2 e. NN0 ) | 
						
							| 36 | 26 33 35 | expmuld |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) | 
						
							| 37 | 6 33 35 | expmuld |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) | 
						
							| 38 | 25 36 37 | 3eqtr4d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( A ^ ( 2 x. n ) ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( ( A ^ ( 2 x. n ) ) x. -u A ) ) | 
						
							| 40 | 26 20 | expp1d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u A ^ ( 2 x. n ) ) x. -u A ) ) | 
						
							| 41 | 7 | oveq2d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( -u A ^ N ) ) | 
						
							| 42 | 40 41 | eqtr3d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) | 
						
							| 43 | 39 42 | eqtr3d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) | 
						
							| 44 | 22 43 | eqtr3d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = ( -u A ^ N ) ) | 
						
							| 45 | 6 20 | expp1d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( ( A ^ ( 2 x. n ) ) x. A ) ) | 
						
							| 46 | 7 | oveq2d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( A ^ N ) ) | 
						
							| 47 | 45 46 | eqtr3d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. A ) = ( A ^ N ) ) | 
						
							| 48 | 47 | negeqd |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = -u ( A ^ N ) ) | 
						
							| 49 | 44 48 | eqtr3d |  |-  ( ( ( A e. CC /\ N e. NN /\ N e. Odd ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ N ) = -u ( A ^ N ) ) | 
						
							| 50 | 5 49 | rexlimddv |  |-  ( ( A e. CC /\ N e. NN /\ N e. Odd ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |