Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
⊢ ( 𝑁 ∈ Odd → 𝑁 ∈ ℤ ) |
2 |
|
odd2np1ALTV |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ Odd ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ Odd → ( 𝑁 ∈ Odd ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
4 |
3
|
ibi |
⊢ ( 𝑁 ∈ Odd → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝐴 ∈ ℂ ) |
7 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
8 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑁 ∈ ℕ ) |
9 |
8
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑁 ∈ ℂ ) |
10 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 1 ∈ ℂ ) |
11 |
|
2z |
⊢ 2 ∈ ℤ |
12 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℤ ) |
13 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℤ ) |
14 |
11 12 13
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℤ ) |
15 |
14
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
16 |
9 10 15
|
subadd2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
17 |
7 16
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝑁 − 1 ) = ( 2 · 𝑛 ) ) |
18 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
19 |
8 18
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
20 |
17 19
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
21 |
6 20
|
expcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
22 |
21 6
|
mulneg2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) ) |
23 |
|
sqneg |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
24 |
6 23
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
26 |
6
|
negcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - 𝐴 ∈ ℂ ) |
27 |
|
2rp |
⊢ 2 ∈ ℝ+ |
28 |
27
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 2 ∈ ℝ+ ) |
29 |
12
|
zred |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℝ ) |
30 |
20
|
nn0ge0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 0 ≤ ( 2 · 𝑛 ) ) |
31 |
28 29 30
|
prodge0rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 0 ≤ 𝑛 ) |
32 |
|
elnn0z |
⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) |
33 |
12 31 32
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
34 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
35 |
34
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → 2 ∈ ℕ0 ) |
36 |
26 33 35
|
expmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
37 |
6 33 35
|
expmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( 2 · 𝑛 ) ) = ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) |
38 |
25 36 37
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( 2 · 𝑛 ) ) = ( 𝐴 ↑ ( 2 · 𝑛 ) ) ) |
39 |
38
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) ) |
40 |
26 20
|
expp1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) ) |
41 |
7
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( - 𝐴 ↑ 𝑁 ) ) |
42 |
40 41
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( - 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
43 |
39 42
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · - 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
44 |
22 43
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = ( - 𝐴 ↑ 𝑁 ) ) |
45 |
6 20
|
expp1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) ) |
46 |
7
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
47 |
45 46
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = ( 𝐴 ↑ 𝑁 ) ) |
48 |
47
|
negeqd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → - ( ( 𝐴 ↑ ( 2 · 𝑛 ) ) · 𝐴 ) = - ( 𝐴 ↑ 𝑁 ) ) |
49 |
44 48
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |
50 |
5 49
|
rexlimddv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → ( - 𝐴 ↑ 𝑁 ) = - ( 𝐴 ↑ 𝑁 ) ) |