| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz | ⊢ ( 𝑁  ∈   Odd   →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | odd2np1ALTV | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈   Odd   ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈   Odd   →  ( 𝑁  ∈   Odd   ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 4 | 3 | ibi | ⊢ ( 𝑁  ∈   Odd   →  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  →  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) | 
						
							| 6 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 9 | 8 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 10 |  | 1cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  1  ∈  ℂ ) | 
						
							| 11 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 12 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 13 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 14 | 11 12 13 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 15 | 14 | zcnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 2  ·  𝑛 )  ∈  ℂ ) | 
						
							| 16 | 9 10 15 | subadd2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝑁  −  1 )  =  ( 2  ·  𝑛 )  ↔  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 17 | 7 16 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝑁  −  1 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 18 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 19 | 8 18 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 20 | 17 19 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 21 | 6 20 | expcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 22 | 21 6 | mulneg2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  - ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 ) ) | 
						
							| 23 |  | sqneg | ⊢ ( 𝐴  ∈  ℂ  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 24 | 6 23 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 )  =  ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 26 | 6 | negcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - 𝐴  ∈  ℂ ) | 
						
							| 27 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  2  ∈  ℝ+ ) | 
						
							| 29 | 12 | zred | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 30 | 20 | nn0ge0d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  0  ≤  ( 2  ·  𝑛 ) ) | 
						
							| 31 | 28 29 30 | prodge0rd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  0  ≤  𝑛 ) | 
						
							| 32 |  | elnn0z | ⊢ ( 𝑛  ∈  ℕ0  ↔  ( 𝑛  ∈  ℤ  ∧  0  ≤  𝑛 ) ) | 
						
							| 33 | 12 31 32 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 34 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 35 | 34 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  2  ∈  ℕ0 ) | 
						
							| 36 | 26 33 35 | expmuld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( ( - 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 37 | 6 33 35 | expmuld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( ( 𝐴 ↑ 2 ) ↑ 𝑛 ) ) | 
						
							| 38 | 25 36 37 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  =  ( 𝐴 ↑ ( 2  ·  𝑛 ) ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 ) ) | 
						
							| 40 | 26 20 | expp1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 ) ) | 
						
							| 41 | 7 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 42 | 40 41 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( - 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 43 | 39 42 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  - 𝐴 )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 44 | 22 43 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 )  =  ( - 𝐴 ↑ 𝑁 ) ) | 
						
							| 45 | 6 20 | expp1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 ) ) | 
						
							| 46 | 7 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( 𝐴 ↑ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 47 | 45 46 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 48 | 47 | negeqd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  - ( ( 𝐴 ↑ ( 2  ·  𝑛 ) )  ·  𝐴 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 49 | 44 48 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  ∧  ( 𝑛  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) )  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 50 | 5 49 | rexlimddv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ  ∧  𝑁  ∈   Odd  )  →  ( - 𝐴 ↑ 𝑁 )  =  - ( 𝐴 ↑ 𝑁 ) ) |