| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtypelem.1 |
|- F = recs ( G ) |
| 2 |
|
ordtypelem.2 |
|- C = { w e. A | A. j e. ran h j R w } |
| 3 |
|
ordtypelem.3 |
|- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
| 4 |
|
ordtypelem.5 |
|- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
| 5 |
|
ordtypelem.6 |
|- O = OrdIso ( R , A ) |
| 6 |
|
ordtypelem.7 |
|- ( ph -> R We A ) |
| 7 |
|
ordtypelem.8 |
|- ( ph -> R Se A ) |
| 8 |
1 2 3 4 5 6 7
|
ordtypelem8 |
|- ( ph -> O Isom _E , R ( dom O , ran O ) ) |
| 9 |
1 2 3 4 5 6 7
|
ordtypelem4 |
|- ( ph -> O : ( T i^i dom F ) --> A ) |
| 10 |
9
|
frnd |
|- ( ph -> ran O C_ A ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> b e. A ) |
| 12 |
6
|
adantr |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> R We A ) |
| 13 |
7
|
adantr |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> R Se A ) |
| 14 |
9
|
ffund |
|- ( ph -> Fun O ) |
| 15 |
14
|
funfnd |
|- ( ph -> O Fn dom O ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O Fn dom O ) |
| 17 |
1 2 3 4 5 12 13
|
ordtypelem8 |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O Isom _E , R ( dom O , ran O ) ) |
| 18 |
|
isof1o |
|- ( O Isom _E , R ( dom O , ran O ) -> O : dom O -1-1-onto-> ran O ) |
| 19 |
|
f1of1 |
|- ( O : dom O -1-1-onto-> ran O -> O : dom O -1-1-> ran O ) |
| 20 |
17 18 19
|
3syl |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O : dom O -1-1-> ran O ) |
| 21 |
|
simpl |
|- ( ( b e. A /\ -. b e. ran O ) -> b e. A ) |
| 22 |
|
seex |
|- ( ( R Se A /\ b e. A ) -> { c e. A | c R b } e. _V ) |
| 23 |
7 21 22
|
syl2an |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> { c e. A | c R b } e. _V ) |
| 24 |
10
|
adantr |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O C_ A ) |
| 25 |
|
rexnal |
|- ( E. m e. dom O -. ( O ` m ) R b <-> -. A. m e. dom O ( O ` m ) R b ) |
| 26 |
1 2 3 4 5 6 7
|
ordtypelem7 |
|- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( ( O ` m ) R b \/ b e. ran O ) ) |
| 27 |
26
|
ord |
|- ( ( ( ph /\ b e. A ) /\ m e. dom O ) -> ( -. ( O ` m ) R b -> b e. ran O ) ) |
| 28 |
27
|
rexlimdva |
|- ( ( ph /\ b e. A ) -> ( E. m e. dom O -. ( O ` m ) R b -> b e. ran O ) ) |
| 29 |
25 28
|
biimtrrid |
|- ( ( ph /\ b e. A ) -> ( -. A. m e. dom O ( O ` m ) R b -> b e. ran O ) ) |
| 30 |
29
|
con1d |
|- ( ( ph /\ b e. A ) -> ( -. b e. ran O -> A. m e. dom O ( O ` m ) R b ) ) |
| 31 |
30
|
impr |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> A. m e. dom O ( O ` m ) R b ) |
| 32 |
|
breq1 |
|- ( c = ( O ` m ) -> ( c R b <-> ( O ` m ) R b ) ) |
| 33 |
32
|
ralrn |
|- ( O Fn dom O -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 34 |
16 33
|
syl |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ( A. c e. ran O c R b <-> A. m e. dom O ( O ` m ) R b ) ) |
| 35 |
31 34
|
mpbird |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> A. c e. ran O c R b ) |
| 36 |
|
ssrab |
|- ( ran O C_ { c e. A | c R b } <-> ( ran O C_ A /\ A. c e. ran O c R b ) ) |
| 37 |
24 35 36
|
sylanbrc |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O C_ { c e. A | c R b } ) |
| 38 |
23 37
|
ssexd |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O e. _V ) |
| 39 |
|
f1dmex |
|- ( ( O : dom O -1-1-> ran O /\ ran O e. _V ) -> dom O e. _V ) |
| 40 |
20 38 39
|
syl2anc |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> dom O e. _V ) |
| 41 |
16 40
|
fnexd |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O e. _V ) |
| 42 |
1 2 3 4 5 12 13 41
|
ordtypelem9 |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> O Isom _E , R ( dom O , A ) ) |
| 43 |
|
isof1o |
|- ( O Isom _E , R ( dom O , A ) -> O : dom O -1-1-onto-> A ) |
| 44 |
|
f1ofo |
|- ( O : dom O -1-1-onto-> A -> O : dom O -onto-> A ) |
| 45 |
|
forn |
|- ( O : dom O -onto-> A -> ran O = A ) |
| 46 |
42 43 44 45
|
4syl |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> ran O = A ) |
| 47 |
11 46
|
eleqtrrd |
|- ( ( ph /\ ( b e. A /\ -. b e. ran O ) ) -> b e. ran O ) |
| 48 |
47
|
expr |
|- ( ( ph /\ b e. A ) -> ( -. b e. ran O -> b e. ran O ) ) |
| 49 |
48
|
pm2.18d |
|- ( ( ph /\ b e. A ) -> b e. ran O ) |
| 50 |
10 49
|
eqelssd |
|- ( ph -> ran O = A ) |
| 51 |
|
isoeq5 |
|- ( ran O = A -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
| 52 |
50 51
|
syl |
|- ( ph -> ( O Isom _E , R ( dom O , ran O ) <-> O Isom _E , R ( dom O , A ) ) ) |
| 53 |
8 52
|
mpbid |
|- ( ph -> O Isom _E , R ( dom O , A ) ) |