Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
|- F = recs ( G ) |
2 |
|
ordtypelem.2 |
|- C = { w e. A | A. j e. ran h j R w } |
3 |
|
ordtypelem.3 |
|- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
4 |
|
ordtypelem.5 |
|- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
5 |
|
ordtypelem.6 |
|- O = OrdIso ( R , A ) |
6 |
|
ordtypelem.7 |
|- ( ph -> R We A ) |
7 |
|
ordtypelem.8 |
|- ( ph -> R Se A ) |
8 |
|
eldif |
|- ( N e. ( A \ ran O ) <-> ( N e. A /\ -. N e. ran O ) ) |
9 |
1 2 3 4 5 6 7
|
ordtypelem4 |
|- ( ph -> O : ( T i^i dom F ) --> A ) |
10 |
9
|
adantr |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> O : ( T i^i dom F ) --> A ) |
11 |
10
|
fdmd |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> dom O = ( T i^i dom F ) ) |
12 |
|
inss1 |
|- ( T i^i dom F ) C_ T |
13 |
1 2 3 4 5 6 7
|
ordtypelem2 |
|- ( ph -> Ord T ) |
14 |
13
|
adantr |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> Ord T ) |
15 |
|
ordsson |
|- ( Ord T -> T C_ On ) |
16 |
14 15
|
syl |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> T C_ On ) |
17 |
12 16
|
sstrid |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( T i^i dom F ) C_ On ) |
18 |
11 17
|
eqsstrd |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> dom O C_ On ) |
19 |
18
|
sseld |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> M e. On ) ) |
20 |
|
eleq1 |
|- ( a = b -> ( a e. dom O <-> b e. dom O ) ) |
21 |
|
fveq2 |
|- ( a = b -> ( O ` a ) = ( O ` b ) ) |
22 |
21
|
breq1d |
|- ( a = b -> ( ( O ` a ) R N <-> ( O ` b ) R N ) ) |
23 |
20 22
|
imbi12d |
|- ( a = b -> ( ( a e. dom O -> ( O ` a ) R N ) <-> ( b e. dom O -> ( O ` b ) R N ) ) ) |
24 |
23
|
imbi2d |
|- ( a = b -> ( ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) <-> ( ( ph /\ N e. ( A \ ran O ) ) -> ( b e. dom O -> ( O ` b ) R N ) ) ) ) |
25 |
|
eleq1 |
|- ( a = M -> ( a e. dom O <-> M e. dom O ) ) |
26 |
|
fveq2 |
|- ( a = M -> ( O ` a ) = ( O ` M ) ) |
27 |
26
|
breq1d |
|- ( a = M -> ( ( O ` a ) R N <-> ( O ` M ) R N ) ) |
28 |
25 27
|
imbi12d |
|- ( a = M -> ( ( a e. dom O -> ( O ` a ) R N ) <-> ( M e. dom O -> ( O ` M ) R N ) ) ) |
29 |
28
|
imbi2d |
|- ( a = M -> ( ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) <-> ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) ) ) |
30 |
|
r19.21v |
|- ( A. b e. a ( ( ph /\ N e. ( A \ ran O ) ) -> ( b e. dom O -> ( O ` b ) R N ) ) <-> ( ( ph /\ N e. ( A \ ran O ) ) -> A. b e. a ( b e. dom O -> ( O ` b ) R N ) ) ) |
31 |
1
|
tfr1a |
|- ( Fun F /\ Lim dom F ) |
32 |
31
|
simpri |
|- Lim dom F |
33 |
|
limord |
|- ( Lim dom F -> Ord dom F ) |
34 |
32 33
|
ax-mp |
|- Ord dom F |
35 |
|
ordin |
|- ( ( Ord T /\ Ord dom F ) -> Ord ( T i^i dom F ) ) |
36 |
14 34 35
|
sylancl |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> Ord ( T i^i dom F ) ) |
37 |
|
ordeq |
|- ( dom O = ( T i^i dom F ) -> ( Ord dom O <-> Ord ( T i^i dom F ) ) ) |
38 |
11 37
|
syl |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( Ord dom O <-> Ord ( T i^i dom F ) ) ) |
39 |
36 38
|
mpbird |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> Ord dom O ) |
40 |
|
ordelss |
|- ( ( Ord dom O /\ a e. dom O ) -> a C_ dom O ) |
41 |
39 40
|
sylan |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> a C_ dom O ) |
42 |
41
|
sselda |
|- ( ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) /\ b e. a ) -> b e. dom O ) |
43 |
|
pm5.5 |
|- ( b e. dom O -> ( ( b e. dom O -> ( O ` b ) R N ) <-> ( O ` b ) R N ) ) |
44 |
42 43
|
syl |
|- ( ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) /\ b e. a ) -> ( ( b e. dom O -> ( O ` b ) R N ) <-> ( O ` b ) R N ) ) |
45 |
44
|
ralbidva |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) <-> A. b e. a ( O ` b ) R N ) ) |
46 |
|
eldifn |
|- ( N e. ( A \ ran O ) -> -. N e. ran O ) |
47 |
46
|
ad2antlr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> -. N e. ran O ) |
48 |
9
|
ad2antrr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> O : ( T i^i dom F ) --> A ) |
49 |
48
|
ffnd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> O Fn ( T i^i dom F ) ) |
50 |
|
simprl |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a e. dom O ) |
51 |
48
|
fdmd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> dom O = ( T i^i dom F ) ) |
52 |
50 51
|
eleqtrd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a e. ( T i^i dom F ) ) |
53 |
|
fnfvelrn |
|- ( ( O Fn ( T i^i dom F ) /\ a e. ( T i^i dom F ) ) -> ( O ` a ) e. ran O ) |
54 |
49 52 53
|
syl2anc |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) e. ran O ) |
55 |
|
eleq1 |
|- ( ( O ` a ) = N -> ( ( O ` a ) e. ran O <-> N e. ran O ) ) |
56 |
54 55
|
syl5ibcom |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( O ` a ) = N -> N e. ran O ) ) |
57 |
47 56
|
mtod |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> -. ( O ` a ) = N ) |
58 |
|
breq1 |
|- ( u = N -> ( u R ( O ` a ) <-> N R ( O ` a ) ) ) |
59 |
58
|
notbid |
|- ( u = N -> ( -. u R ( O ` a ) <-> -. N R ( O ` a ) ) ) |
60 |
1 2 3 4 5 6 7
|
ordtypelem1 |
|- ( ph -> O = ( F |` T ) ) |
61 |
60
|
ad2antrr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> O = ( F |` T ) ) |
62 |
61
|
fveq1d |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) = ( ( F |` T ) ` a ) ) |
63 |
52
|
elin1d |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a e. T ) |
64 |
63
|
fvresd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( F |` T ) ` a ) = ( F ` a ) ) |
65 |
62 64
|
eqtrd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) = ( F ` a ) ) |
66 |
|
simpll |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ph ) |
67 |
1 2 3 4 5 6 7
|
ordtypelem3 |
|- ( ( ph /\ a e. ( T i^i dom F ) ) -> ( F ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
68 |
66 52 67
|
syl2anc |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( F ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
69 |
65 68
|
eqeltrd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } ) |
70 |
|
breq2 |
|- ( v = ( O ` a ) -> ( u R v <-> u R ( O ` a ) ) ) |
71 |
70
|
notbid |
|- ( v = ( O ` a ) -> ( -. u R v <-> -. u R ( O ` a ) ) ) |
72 |
71
|
ralbidv |
|- ( v = ( O ` a ) -> ( A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v <-> A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) ) |
73 |
72
|
elrab |
|- ( ( O ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } <-> ( ( O ` a ) e. { w e. A | A. j e. ( F " a ) j R w } /\ A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) ) |
74 |
73
|
simprbi |
|- ( ( O ` a ) e. { v e. { w e. A | A. j e. ( F " a ) j R w } | A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R v } -> A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) |
75 |
69 74
|
syl |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. u e. { w e. A | A. j e. ( F " a ) j R w } -. u R ( O ` a ) ) |
76 |
|
breq2 |
|- ( w = N -> ( j R w <-> j R N ) ) |
77 |
76
|
ralbidv |
|- ( w = N -> ( A. j e. ( F " a ) j R w <-> A. j e. ( F " a ) j R N ) ) |
78 |
|
eldifi |
|- ( N e. ( A \ ran O ) -> N e. A ) |
79 |
78
|
ad2antlr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> N e. A ) |
80 |
|
simprr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. b e. a ( O ` b ) R N ) |
81 |
41
|
adantrr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ dom O ) |
82 |
48 81
|
fssdmd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ ( T i^i dom F ) ) |
83 |
82 12
|
sstrdi |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ T ) |
84 |
|
fveq1 |
|- ( O = ( F |` T ) -> ( O ` b ) = ( ( F |` T ) ` b ) ) |
85 |
|
ssel2 |
|- ( ( a C_ T /\ b e. a ) -> b e. T ) |
86 |
85
|
fvresd |
|- ( ( a C_ T /\ b e. a ) -> ( ( F |` T ) ` b ) = ( F ` b ) ) |
87 |
84 86
|
sylan9eq |
|- ( ( O = ( F |` T ) /\ ( a C_ T /\ b e. a ) ) -> ( O ` b ) = ( F ` b ) ) |
88 |
87
|
anassrs |
|- ( ( ( O = ( F |` T ) /\ a C_ T ) /\ b e. a ) -> ( O ` b ) = ( F ` b ) ) |
89 |
88
|
breq1d |
|- ( ( ( O = ( F |` T ) /\ a C_ T ) /\ b e. a ) -> ( ( O ` b ) R N <-> ( F ` b ) R N ) ) |
90 |
89
|
ralbidva |
|- ( ( O = ( F |` T ) /\ a C_ T ) -> ( A. b e. a ( O ` b ) R N <-> A. b e. a ( F ` b ) R N ) ) |
91 |
61 83 90
|
syl2anc |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( A. b e. a ( O ` b ) R N <-> A. b e. a ( F ` b ) R N ) ) |
92 |
80 91
|
mpbid |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. b e. a ( F ` b ) R N ) |
93 |
31
|
simpli |
|- Fun F |
94 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
95 |
93 94
|
mpbi |
|- F Fn dom F |
96 |
|
inss2 |
|- ( T i^i dom F ) C_ dom F |
97 |
82 96
|
sstrdi |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> a C_ dom F ) |
98 |
|
breq1 |
|- ( j = ( F ` b ) -> ( j R N <-> ( F ` b ) R N ) ) |
99 |
98
|
ralima |
|- ( ( F Fn dom F /\ a C_ dom F ) -> ( A. j e. ( F " a ) j R N <-> A. b e. a ( F ` b ) R N ) ) |
100 |
95 97 99
|
sylancr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( A. j e. ( F " a ) j R N <-> A. b e. a ( F ` b ) R N ) ) |
101 |
92 100
|
mpbird |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> A. j e. ( F " a ) j R N ) |
102 |
77 79 101
|
elrabd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> N e. { w e. A | A. j e. ( F " a ) j R w } ) |
103 |
59 75 102
|
rspcdva |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> -. N R ( O ` a ) ) |
104 |
|
weso |
|- ( R We A -> R Or A ) |
105 |
6 104
|
syl |
|- ( ph -> R Or A ) |
106 |
105
|
ad2antrr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> R Or A ) |
107 |
48 52
|
ffvelrnd |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) e. A ) |
108 |
|
sotric |
|- ( ( R Or A /\ ( ( O ` a ) e. A /\ N e. A ) ) -> ( ( O ` a ) R N <-> -. ( ( O ` a ) = N \/ N R ( O ` a ) ) ) ) |
109 |
106 107 79 108
|
syl12anc |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( O ` a ) R N <-> -. ( ( O ` a ) = N \/ N R ( O ` a ) ) ) ) |
110 |
|
ioran |
|- ( -. ( ( O ` a ) = N \/ N R ( O ` a ) ) <-> ( -. ( O ` a ) = N /\ -. N R ( O ` a ) ) ) |
111 |
109 110
|
bitrdi |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( ( O ` a ) R N <-> ( -. ( O ` a ) = N /\ -. N R ( O ` a ) ) ) ) |
112 |
57 103 111
|
mpbir2and |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ ( a e. dom O /\ A. b e. a ( O ` b ) R N ) ) -> ( O ` a ) R N ) |
113 |
112
|
expr |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> ( A. b e. a ( O ` b ) R N -> ( O ` a ) R N ) ) |
114 |
45 113
|
sylbid |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) /\ a e. dom O ) -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) -> ( O ` a ) R N ) ) |
115 |
114
|
ex |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) -> ( O ` a ) R N ) ) ) |
116 |
115
|
com23 |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( A. b e. a ( b e. dom O -> ( O ` b ) R N ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) |
117 |
116
|
a2i |
|- ( ( ( ph /\ N e. ( A \ ran O ) ) -> A. b e. a ( b e. dom O -> ( O ` b ) R N ) ) -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) |
118 |
117
|
a1i |
|- ( a e. On -> ( ( ( ph /\ N e. ( A \ ran O ) ) -> A. b e. a ( b e. dom O -> ( O ` b ) R N ) ) -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) ) |
119 |
30 118
|
syl5bi |
|- ( a e. On -> ( A. b e. a ( ( ph /\ N e. ( A \ ran O ) ) -> ( b e. dom O -> ( O ` b ) R N ) ) -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( a e. dom O -> ( O ` a ) R N ) ) ) ) |
120 |
24 29 119
|
tfis3 |
|- ( M e. On -> ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) ) |
121 |
120
|
com3l |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( M e. On -> ( O ` M ) R N ) ) ) |
122 |
19 121
|
mpdd |
|- ( ( ph /\ N e. ( A \ ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) |
123 |
8 122
|
sylan2br |
|- ( ( ph /\ ( N e. A /\ -. N e. ran O ) ) -> ( M e. dom O -> ( O ` M ) R N ) ) |
124 |
123
|
anassrs |
|- ( ( ( ph /\ N e. A ) /\ -. N e. ran O ) -> ( M e. dom O -> ( O ` M ) R N ) ) |
125 |
124
|
impancom |
|- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( -. N e. ran O -> ( O ` M ) R N ) ) |
126 |
125
|
orrd |
|- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( N e. ran O \/ ( O ` M ) R N ) ) |
127 |
126
|
orcomd |
|- ( ( ( ph /\ N e. A ) /\ M e. dom O ) -> ( ( O ` M ) R N \/ N e. ran O ) ) |