Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
⊢ 𝐹 = recs ( 𝐺 ) |
2 |
|
ordtypelem.2 |
⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
3 |
|
ordtypelem.3 |
⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) |
4 |
|
ordtypelem.5 |
⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } |
5 |
|
ordtypelem.6 |
⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) |
6 |
|
ordtypelem.7 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
7 |
|
ordtypelem.8 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
8 |
|
eldif |
⊢ ( 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ↔ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂 ) ) |
9 |
1 2 3 4 5 6 7
|
ordtypelem4 |
⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
11 |
10
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
12 |
|
inss1 |
⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇 |
13 |
1 2 3 4 5 6 7
|
ordtypelem2 |
⊢ ( 𝜑 → Ord 𝑇 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → Ord 𝑇 ) |
15 |
|
ordsson |
⊢ ( Ord 𝑇 → 𝑇 ⊆ On ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → 𝑇 ⊆ On ) |
17 |
12 16
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑇 ∩ dom 𝐹 ) ⊆ On ) |
18 |
11 17
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → dom 𝑂 ⊆ On ) |
19 |
18
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → 𝑀 ∈ On ) ) |
20 |
|
eleq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ dom 𝑂 ↔ 𝑏 ∈ dom 𝑂 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑂 ‘ 𝑎 ) = ( 𝑂 ‘ 𝑏 ) ) |
22 |
21
|
breq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ↔ ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑎 = 𝑀 → ( 𝑎 ∈ dom 𝑂 ↔ 𝑀 ∈ dom 𝑂 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝑂 ‘ 𝑎 ) = ( 𝑂 ‘ 𝑀 ) ) |
27 |
26
|
breq1d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
28 |
25 27
|
imbi12d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ↔ ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑎 = 𝑀 → ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) ) |
30 |
|
r19.21v |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) ) |
31 |
1
|
tfr1a |
⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
32 |
31
|
simpri |
⊢ Lim dom 𝐹 |
33 |
|
limord |
⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) |
34 |
32 33
|
ax-mp |
⊢ Ord dom 𝐹 |
35 |
|
ordin |
⊢ ( ( Ord 𝑇 ∧ Ord dom 𝐹 ) → Ord ( 𝑇 ∩ dom 𝐹 ) ) |
36 |
14 34 35
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → Ord ( 𝑇 ∩ dom 𝐹 ) ) |
37 |
|
ordeq |
⊢ ( dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) → ( Ord dom 𝑂 ↔ Ord ( 𝑇 ∩ dom 𝐹 ) ) ) |
38 |
11 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( Ord dom 𝑂 ↔ Ord ( 𝑇 ∩ dom 𝐹 ) ) ) |
39 |
36 38
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → Ord dom 𝑂 ) |
40 |
|
ordelss |
⊢ ( ( Ord dom 𝑂 ∧ 𝑎 ∈ dom 𝑂 ) → 𝑎 ⊆ dom 𝑂 ) |
41 |
39 40
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → 𝑎 ⊆ dom 𝑂 ) |
42 |
41
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ dom 𝑂 ) |
43 |
|
pm5.5 |
⊢ ( 𝑏 ∈ dom 𝑂 → ( ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ↔ ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
44 |
42 43
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ↔ ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
45 |
44
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ↔ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
46 |
|
eldifn |
⊢ ( 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) → ¬ 𝑁 ∈ ran 𝑂 ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ¬ 𝑁 ∈ ran 𝑂 ) |
48 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
49 |
48
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑂 Fn ( 𝑇 ∩ dom 𝐹 ) ) |
50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ∈ dom 𝑂 ) |
51 |
48
|
fdmd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
52 |
50 51
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) |
53 |
|
fnfvelrn |
⊢ ( ( 𝑂 Fn ( 𝑇 ∩ dom 𝐹 ) ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ ran 𝑂 ) |
54 |
49 52 53
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ ran 𝑂 ) |
55 |
|
eleq1 |
⊢ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 → ( ( 𝑂 ‘ 𝑎 ) ∈ ran 𝑂 ↔ 𝑁 ∈ ran 𝑂 ) ) |
56 |
54 55
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝑂 ‘ 𝑎 ) = 𝑁 → 𝑁 ∈ ran 𝑂 ) ) |
57 |
47 56
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ¬ ( 𝑂 ‘ 𝑎 ) = 𝑁 ) |
58 |
|
breq1 |
⊢ ( 𝑢 = 𝑁 → ( 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ↔ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
59 |
58
|
notbid |
⊢ ( 𝑢 = 𝑁 → ( ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ↔ ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
60 |
1 2 3 4 5 6 7
|
ordtypelem1 |
⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
62 |
61
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) ) |
63 |
52
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ∈ 𝑇 ) |
64 |
63
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
65 |
62 64
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
66 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝜑 ) |
67 |
1 2 3 4 5 6 7
|
ordtypelem3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
68 |
66 52 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
69 |
65 68
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
70 |
|
breq2 |
⊢ ( 𝑣 = ( 𝑂 ‘ 𝑎 ) → ( 𝑢 𝑅 𝑣 ↔ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
71 |
70
|
notbid |
⊢ ( 𝑣 = ( 𝑂 ‘ 𝑎 ) → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
72 |
71
|
ralbidv |
⊢ ( 𝑣 = ( 𝑂 ‘ 𝑎 ) → ( ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
73 |
72
|
elrab |
⊢ ( ( 𝑂 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ↔ ( ( 𝑂 ‘ 𝑎 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∧ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
74 |
73
|
simprbi |
⊢ ( ( 𝑂 ‘ 𝑎 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } → ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) |
75 |
69 74
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 ( 𝑂 ‘ 𝑎 ) ) |
76 |
|
breq2 |
⊢ ( 𝑤 = 𝑁 → ( 𝑗 𝑅 𝑤 ↔ 𝑗 𝑅 𝑁 ) ) |
77 |
76
|
ralbidv |
⊢ ( 𝑤 = 𝑁 → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ) ) |
78 |
|
eldifi |
⊢ ( 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) → 𝑁 ∈ 𝐴 ) |
79 |
78
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑁 ∈ 𝐴 ) |
80 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) |
81 |
41
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ dom 𝑂 ) |
82 |
48 81
|
fssdmd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ ( 𝑇 ∩ dom 𝐹 ) ) |
83 |
82 12
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ 𝑇 ) |
84 |
|
fveq1 |
⊢ ( 𝑂 = ( 𝐹 ↾ 𝑇 ) → ( 𝑂 ‘ 𝑏 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑏 ) ) |
85 |
|
ssel2 |
⊢ ( ( 𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎 ) → 𝑏 ∈ 𝑇 ) |
86 |
85
|
fvresd |
⊢ ( ( 𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
87 |
84 86
|
sylan9eq |
⊢ ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ ( 𝑎 ⊆ 𝑇 ∧ 𝑏 ∈ 𝑎 ) ) → ( 𝑂 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
88 |
87
|
anassrs |
⊢ ( ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ 𝑎 ⊆ 𝑇 ) ∧ 𝑏 ∈ 𝑎 ) → ( 𝑂 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
89 |
88
|
breq1d |
⊢ ( ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ 𝑎 ⊆ 𝑇 ) ∧ 𝑏 ∈ 𝑎 ) → ( ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ↔ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
90 |
89
|
ralbidva |
⊢ ( ( 𝑂 = ( 𝐹 ↾ 𝑇 ) ∧ 𝑎 ⊆ 𝑇 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
91 |
61 83 90
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
92 |
80 91
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) |
93 |
31
|
simpli |
⊢ Fun 𝐹 |
94 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
95 |
93 94
|
mpbi |
⊢ 𝐹 Fn dom 𝐹 |
96 |
|
inss2 |
⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
97 |
82 96
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑎 ⊆ dom 𝐹 ) |
98 |
|
breq1 |
⊢ ( 𝑗 = ( 𝐹 ‘ 𝑏 ) → ( 𝑗 𝑅 𝑁 ↔ ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
99 |
98
|
ralima |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑎 ⊆ dom 𝐹 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
100 |
95 97 99
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ↔ ∀ 𝑏 ∈ 𝑎 ( 𝐹 ‘ 𝑏 ) 𝑅 𝑁 ) ) |
101 |
92 100
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑁 ) |
102 |
77 79 101
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑁 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑎 ) 𝑗 𝑅 𝑤 } ) |
103 |
59 75 102
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) |
104 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
105 |
6 104
|
syl |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
106 |
105
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → 𝑅 Or 𝐴 ) |
107 |
48 52
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) ∈ 𝐴 ) |
108 |
|
sotric |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( ( 𝑂 ‘ 𝑎 ) ∈ 𝐴 ∧ 𝑁 ∈ 𝐴 ) ) → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ¬ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 ∨ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) ) |
109 |
106 107 79 108
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ¬ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 ∨ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) ) |
110 |
|
ioran |
⊢ ( ¬ ( ( 𝑂 ‘ 𝑎 ) = 𝑁 ∨ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ↔ ( ¬ ( 𝑂 ‘ 𝑎 ) = 𝑁 ∧ ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) |
111 |
109 110
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ↔ ( ¬ ( 𝑂 ‘ 𝑎 ) = 𝑁 ∧ ¬ 𝑁 𝑅 ( 𝑂 ‘ 𝑎 ) ) ) ) |
112 |
57 103 111
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ ( 𝑎 ∈ dom 𝑂 ∧ ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) |
113 |
112
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) |
114 |
45 113
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) ∧ 𝑎 ∈ dom 𝑂 ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) |
115 |
114
|
ex |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) |
116 |
115
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) |
117 |
116
|
a2i |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) |
118 |
117
|
a1i |
⊢ ( 𝑎 ∈ On → ( ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ∀ 𝑏 ∈ 𝑎 ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) ) |
119 |
30 118
|
syl5bi |
⊢ ( 𝑎 ∈ On → ( ∀ 𝑏 ∈ 𝑎 ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑏 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑏 ) 𝑅 𝑁 ) ) → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑎 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑎 ) 𝑅 𝑁 ) ) ) ) |
120 |
24 29 119
|
tfis3 |
⊢ ( 𝑀 ∈ On → ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) |
121 |
120
|
com3l |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑀 ∈ On → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) ) |
122 |
19 121
|
mpdd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( 𝐴 ∖ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
123 |
8 122
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ∈ ran 𝑂 ) ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
124 |
123
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ ¬ 𝑁 ∈ ran 𝑂 ) → ( 𝑀 ∈ dom 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
125 |
124
|
impancom |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( ¬ 𝑁 ∈ ran 𝑂 → ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
126 |
125
|
orrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝑁 ∈ ran 𝑂 ∨ ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ) ) |
127 |
126
|
orcomd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ 𝐴 ) ∧ 𝑀 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑀 ) 𝑅 𝑁 ∨ 𝑁 ∈ ran 𝑂 ) ) |