Metamath Proof Explorer


Theorem ordtypelem8

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 𝐹 = recs ( 𝐺 )
ordtypelem.2 𝐶 = { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 }
ordtypelem.3 𝐺 = ( ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑅 𝑣 ) )
ordtypelem.5 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( 𝐹𝑥 ) 𝑧 𝑅 𝑡 }
ordtypelem.6 𝑂 = OrdIso ( 𝑅 , 𝐴 )
ordtypelem.7 ( 𝜑𝑅 We 𝐴 )
ordtypelem.8 ( 𝜑𝑅 Se 𝐴 )
Assertion ordtypelem8 ( 𝜑𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) )

Proof

Step Hyp Ref Expression
1 ordtypelem.1 𝐹 = recs ( 𝐺 )
2 ordtypelem.2 𝐶 = { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 }
3 ordtypelem.3 𝐺 = ( ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑅 𝑣 ) )
4 ordtypelem.5 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( 𝐹𝑥 ) 𝑧 𝑅 𝑡 }
5 ordtypelem.6 𝑂 = OrdIso ( 𝑅 , 𝐴 )
6 ordtypelem.7 ( 𝜑𝑅 We 𝐴 )
7 ordtypelem.8 ( 𝜑𝑅 Se 𝐴 )
8 1 2 3 4 5 6 7 ordtypelem4 ( 𝜑𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 )
9 8 fdmd ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) )
10 inss1 ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇
11 1 2 3 4 5 6 7 ordtypelem2 ( 𝜑 → Ord 𝑇 )
12 ordsson ( Ord 𝑇𝑇 ⊆ On )
13 11 12 syl ( 𝜑𝑇 ⊆ On )
14 10 13 sstrid ( 𝜑 → ( 𝑇 ∩ dom 𝐹 ) ⊆ On )
15 9 14 eqsstrd ( 𝜑 → dom 𝑂 ⊆ On )
16 epweon E We On
17 weso ( E We On → E Or On )
18 16 17 ax-mp E Or On
19 soss ( dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂 ) )
20 15 18 19 mpisyl ( 𝜑 → E Or dom 𝑂 )
21 8 frnd ( 𝜑 → ran 𝑂𝐴 )
22 wess ( ran 𝑂𝐴 → ( 𝑅 We 𝐴𝑅 We ran 𝑂 ) )
23 21 6 22 sylc ( 𝜑𝑅 We ran 𝑂 )
24 weso ( 𝑅 We ran 𝑂𝑅 Or ran 𝑂 )
25 sopo ( 𝑅 Or ran 𝑂𝑅 Po ran 𝑂 )
26 23 24 25 3syl ( 𝜑𝑅 Po ran 𝑂 )
27 8 ffund ( 𝜑 → Fun 𝑂 )
28 funforn ( Fun 𝑂𝑂 : dom 𝑂onto→ ran 𝑂 )
29 27 28 sylib ( 𝜑𝑂 : dom 𝑂onto→ ran 𝑂 )
30 epel ( 𝑎 E 𝑏𝑎𝑏 )
31 1 2 3 4 5 6 7 ordtypelem6 ( ( 𝜑𝑏 ∈ dom 𝑂 ) → ( 𝑎𝑏 → ( 𝑂𝑎 ) 𝑅 ( 𝑂𝑏 ) ) )
32 30 31 syl5bi ( ( 𝜑𝑏 ∈ dom 𝑂 ) → ( 𝑎 E 𝑏 → ( 𝑂𝑎 ) 𝑅 ( 𝑂𝑏 ) ) )
33 32 ralrimiva ( 𝜑 → ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂𝑎 ) 𝑅 ( 𝑂𝑏 ) ) )
34 33 ralrimivw ( 𝜑 → ∀ 𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂𝑎 ) 𝑅 ( 𝑂𝑏 ) ) )
35 soisoi ( ( ( E Or dom 𝑂𝑅 Po ran 𝑂 ) ∧ ( 𝑂 : dom 𝑂onto→ ran 𝑂 ∧ ∀ 𝑎 ∈ dom 𝑂𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂𝑎 ) 𝑅 ( 𝑂𝑏 ) ) ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) )
36 20 26 29 34 35 syl22anc ( 𝜑𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) )