Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
⊢ 𝐹 = recs ( 𝐺 ) |
2 |
|
ordtypelem.2 |
⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
3 |
|
ordtypelem.3 |
⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) |
4 |
|
ordtypelem.5 |
⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } |
5 |
|
ordtypelem.6 |
⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) |
6 |
|
ordtypelem.7 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
7 |
|
ordtypelem.8 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
8 |
1 2 3 4 5 6 7
|
ordtypelem4 |
⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
9 |
8
|
fdmd |
⊢ ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
10 |
|
inss1 |
⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇 |
11 |
1 2 3 4 5 6 7
|
ordtypelem2 |
⊢ ( 𝜑 → Ord 𝑇 ) |
12 |
|
ordsson |
⊢ ( Ord 𝑇 → 𝑇 ⊆ On ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ On ) |
14 |
10 13
|
sstrid |
⊢ ( 𝜑 → ( 𝑇 ∩ dom 𝐹 ) ⊆ On ) |
15 |
9 14
|
eqsstrd |
⊢ ( 𝜑 → dom 𝑂 ⊆ On ) |
16 |
|
epweon |
⊢ E We On |
17 |
|
weso |
⊢ ( E We On → E Or On ) |
18 |
16 17
|
ax-mp |
⊢ E Or On |
19 |
|
soss |
⊢ ( dom 𝑂 ⊆ On → ( E Or On → E Or dom 𝑂 ) ) |
20 |
15 18 19
|
mpisyl |
⊢ ( 𝜑 → E Or dom 𝑂 ) |
21 |
8
|
frnd |
⊢ ( 𝜑 → ran 𝑂 ⊆ 𝐴 ) |
22 |
|
wess |
⊢ ( ran 𝑂 ⊆ 𝐴 → ( 𝑅 We 𝐴 → 𝑅 We ran 𝑂 ) ) |
23 |
21 6 22
|
sylc |
⊢ ( 𝜑 → 𝑅 We ran 𝑂 ) |
24 |
|
weso |
⊢ ( 𝑅 We ran 𝑂 → 𝑅 Or ran 𝑂 ) |
25 |
|
sopo |
⊢ ( 𝑅 Or ran 𝑂 → 𝑅 Po ran 𝑂 ) |
26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → 𝑅 Po ran 𝑂 ) |
27 |
8
|
ffund |
⊢ ( 𝜑 → Fun 𝑂 ) |
28 |
|
funforn |
⊢ ( Fun 𝑂 ↔ 𝑂 : dom 𝑂 –onto→ ran 𝑂 ) |
29 |
27 28
|
sylib |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 –onto→ ran 𝑂 ) |
30 |
|
epel |
⊢ ( 𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏 ) |
31 |
1 2 3 4 5 6 7
|
ordtypelem6 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ dom 𝑂 ) → ( 𝑎 ∈ 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
32 |
30 31
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ dom 𝑂 ) → ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
34 |
33
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑂 ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) |
35 |
|
soisoi |
⊢ ( ( ( E Or dom 𝑂 ∧ 𝑅 Po ran 𝑂 ) ∧ ( 𝑂 : dom 𝑂 –onto→ ran 𝑂 ∧ ∀ 𝑎 ∈ dom 𝑂 ∀ 𝑏 ∈ dom 𝑂 ( 𝑎 E 𝑏 → ( 𝑂 ‘ 𝑎 ) 𝑅 ( 𝑂 ‘ 𝑏 ) ) ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
36 |
20 26 29 34 35
|
syl22anc |
⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |