Metamath Proof Explorer


Theorem ordtypelem6

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 𝐹 = recs ( 𝐺 )
ordtypelem.2 𝐶 = { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 }
ordtypelem.3 𝐺 = ( ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑅 𝑣 ) )
ordtypelem.5 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( 𝐹𝑥 ) 𝑧 𝑅 𝑡 }
ordtypelem.6 𝑂 = OrdIso ( 𝑅 , 𝐴 )
ordtypelem.7 ( 𝜑𝑅 We 𝐴 )
ordtypelem.8 ( 𝜑𝑅 Se 𝐴 )
Assertion ordtypelem6 ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ( 𝑁𝑀 → ( 𝑂𝑁 ) 𝑅 ( 𝑂𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 ordtypelem.1 𝐹 = recs ( 𝐺 )
2 ordtypelem.2 𝐶 = { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ran 𝑗 𝑅 𝑤 }
3 ordtypelem.3 𝐺 = ( ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑅 𝑣 ) )
4 ordtypelem.5 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡𝐴𝑧 ∈ ( 𝐹𝑥 ) 𝑧 𝑅 𝑡 }
5 ordtypelem.6 𝑂 = OrdIso ( 𝑅 , 𝐴 )
6 ordtypelem.7 ( 𝜑𝑅 We 𝐴 )
7 ordtypelem.8 ( 𝜑𝑅 Se 𝐴 )
8 fveq2 ( 𝑎 = 𝑁 → ( 𝐹𝑎 ) = ( 𝐹𝑁 ) )
9 8 breq1d ( 𝑎 = 𝑁 → ( ( 𝐹𝑎 ) 𝑅 ( 𝐹𝑀 ) ↔ ( 𝐹𝑁 ) 𝑅 ( 𝐹𝑀 ) ) )
10 ssrab2 { 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ⊆ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 }
11 simpr ( ( 𝜑𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ dom 𝑂 )
12 1 2 3 4 5 6 7 ordtypelem4 ( 𝜑𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 )
13 12 fdmd ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) )
14 13 adantr ( ( 𝜑𝑀 ∈ dom 𝑂 ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) )
15 11 14 eleqtrd ( ( 𝜑𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) )
16 1 2 3 4 5 6 7 ordtypelem3 ( ( 𝜑𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹𝑀 ) ∈ { 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } )
17 15 16 syldan ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ( 𝐹𝑀 ) ∈ { 𝑣 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } )
18 10 17 sseldi ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ( 𝐹𝑀 ) ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } )
19 breq2 ( 𝑤 = ( 𝐹𝑀 ) → ( 𝑗 𝑅 𝑤𝑗 𝑅 ( 𝐹𝑀 ) ) )
20 19 ralbidv ( 𝑤 = ( 𝐹𝑀 ) → ( ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 ( 𝐹𝑀 ) ) )
21 20 elrab ( ( 𝐹𝑀 ) ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } ↔ ( ( 𝐹𝑀 ) ∈ 𝐴 ∧ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 ( 𝐹𝑀 ) ) )
22 21 simprbi ( ( 𝐹𝑀 ) ∈ { 𝑤𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 𝑤 } → ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 ( 𝐹𝑀 ) )
23 18 22 syl ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 ( 𝐹𝑀 ) )
24 1 tfr1a ( Fun 𝐹 ∧ Lim dom 𝐹 )
25 24 simpli Fun 𝐹
26 funfn ( Fun 𝐹𝐹 Fn dom 𝐹 )
27 25 26 mpbi 𝐹 Fn dom 𝐹
28 24 simpri Lim dom 𝐹
29 limord ( Lim dom 𝐹 → Ord dom 𝐹 )
30 28 29 ax-mp Ord dom 𝐹
31 inss2 ( 𝑇 ∩ dom 𝐹 ) ⊆ dom 𝐹
32 13 31 eqsstrdi ( 𝜑 → dom 𝑂 ⊆ dom 𝐹 )
33 32 sselda ( ( 𝜑𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ dom 𝐹 )
34 ordelss ( ( Ord dom 𝐹𝑀 ∈ dom 𝐹 ) → 𝑀 ⊆ dom 𝐹 )
35 30 33 34 sylancr ( ( 𝜑𝑀 ∈ dom 𝑂 ) → 𝑀 ⊆ dom 𝐹 )
36 breq1 ( 𝑗 = ( 𝐹𝑎 ) → ( 𝑗 𝑅 ( 𝐹𝑀 ) ↔ ( 𝐹𝑎 ) 𝑅 ( 𝐹𝑀 ) ) )
37 36 ralima ( ( 𝐹 Fn dom 𝐹𝑀 ⊆ dom 𝐹 ) → ( ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 ( 𝐹𝑀 ) ↔ ∀ 𝑎𝑀 ( 𝐹𝑎 ) 𝑅 ( 𝐹𝑀 ) ) )
38 27 35 37 sylancr ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ( ∀ 𝑗 ∈ ( 𝐹𝑀 ) 𝑗 𝑅 ( 𝐹𝑀 ) ↔ ∀ 𝑎𝑀 ( 𝐹𝑎 ) 𝑅 ( 𝐹𝑀 ) ) )
39 23 38 mpbid ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ∀ 𝑎𝑀 ( 𝐹𝑎 ) 𝑅 ( 𝐹𝑀 ) )
40 39 adantrr ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ∀ 𝑎𝑀 ( 𝐹𝑎 ) 𝑅 ( 𝐹𝑀 ) )
41 simprr ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → 𝑁𝑀 )
42 9 40 41 rspcdva ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( 𝐹𝑁 ) 𝑅 ( 𝐹𝑀 ) )
43 1 2 3 4 5 6 7 ordtypelem1 ( 𝜑𝑂 = ( 𝐹𝑇 ) )
44 43 adantr ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → 𝑂 = ( 𝐹𝑇 ) )
45 44 fveq1d ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( 𝑂𝑁 ) = ( ( 𝐹𝑇 ) ‘ 𝑁 ) )
46 1 2 3 4 5 6 7 ordtypelem2 ( 𝜑 → Ord 𝑇 )
47 inss1 ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇
48 13 47 eqsstrdi ( 𝜑 → dom 𝑂𝑇 )
49 48 sselda ( ( 𝜑𝑀 ∈ dom 𝑂 ) → 𝑀𝑇 )
50 49 adantrr ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → 𝑀𝑇 )
51 ordelss ( ( Ord 𝑇𝑀𝑇 ) → 𝑀𝑇 )
52 46 50 51 syl2an2r ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → 𝑀𝑇 )
53 52 41 sseldd ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → 𝑁𝑇 )
54 53 fvresd ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( ( 𝐹𝑇 ) ‘ 𝑁 ) = ( 𝐹𝑁 ) )
55 45 54 eqtrd ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( 𝑂𝑁 ) = ( 𝐹𝑁 ) )
56 44 fveq1d ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( 𝑂𝑀 ) = ( ( 𝐹𝑇 ) ‘ 𝑀 ) )
57 50 fvresd ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( ( 𝐹𝑇 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )
58 56 57 eqtrd ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( 𝑂𝑀 ) = ( 𝐹𝑀 ) )
59 42 55 58 3brtr4d ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂𝑁𝑀 ) ) → ( 𝑂𝑁 ) 𝑅 ( 𝑂𝑀 ) )
60 59 expr ( ( 𝜑𝑀 ∈ dom 𝑂 ) → ( 𝑁𝑀 → ( 𝑂𝑁 ) 𝑅 ( 𝑂𝑀 ) ) )