| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtypelem.1 | ⊢ 𝐹  =  recs ( 𝐺 ) | 
						
							| 2 |  | ordtypelem.2 | ⊢ 𝐶  =  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } | 
						
							| 3 |  | ordtypelem.3 | ⊢ 𝐺  =  ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  𝐶 ∀ 𝑢  ∈  𝐶 ¬  𝑢 𝑅 𝑣 ) ) | 
						
							| 4 |  | ordtypelem.5 | ⊢ 𝑇  =  { 𝑥  ∈  On  ∣  ∃ 𝑡  ∈  𝐴 ∀ 𝑧  ∈  ( 𝐹  “  𝑥 ) 𝑧 𝑅 𝑡 } | 
						
							| 5 |  | ordtypelem.6 | ⊢ 𝑂  =  OrdIso ( 𝑅 ,  𝐴 ) | 
						
							| 6 |  | ordtypelem.7 | ⊢ ( 𝜑  →  𝑅  We  𝐴 ) | 
						
							| 7 |  | ordtypelem.8 | ⊢ ( 𝜑  →  𝑅  Se  𝐴 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 )  ↔  ( 𝐹 ‘ 𝑁 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 10 |  | ssrab2 | ⊢ { 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 }  ∣  ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 }  ⊆  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 } | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  𝑀  ∈  dom  𝑂 ) | 
						
							| 12 | 1 2 3 4 5 6 7 | ordtypelem4 | ⊢ ( 𝜑  →  𝑂 : ( 𝑇  ∩  dom  𝐹 ) ⟶ 𝐴 ) | 
						
							| 13 | 12 | fdmd | ⊢ ( 𝜑  →  dom  𝑂  =  ( 𝑇  ∩  dom  𝐹 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  dom  𝑂  =  ( 𝑇  ∩  dom  𝐹 ) ) | 
						
							| 15 | 11 14 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  𝑀  ∈  ( 𝑇  ∩  dom  𝐹 ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 | ordtypelem3 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 𝑇  ∩  dom  𝐹 ) )  →  ( 𝐹 ‘ 𝑀 )  ∈  { 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 }  ∣  ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 } ) | 
						
							| 17 | 15 16 | syldan | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  ( 𝐹 ‘ 𝑀 )  ∈  { 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 }  ∣  ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 } ) | 
						
							| 18 | 10 17 | sselid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  ( 𝐹 ‘ 𝑀 )  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 } ) | 
						
							| 19 |  | breq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑀 )  →  ( 𝑗 𝑅 𝑤  ↔  𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑀 )  →  ( ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤  ↔  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 21 | 20 | elrab | ⊢ ( ( 𝐹 ‘ 𝑀 )  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 }  ↔  ( ( 𝐹 ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 22 | 21 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑀 )  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 𝑤 }  →  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 23 | 18 22 | syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 24 | 1 | tfr1a | ⊢ ( Fun  𝐹  ∧  Lim  dom  𝐹 ) | 
						
							| 25 | 24 | simpli | ⊢ Fun  𝐹 | 
						
							| 26 |  | funfn | ⊢ ( Fun  𝐹  ↔  𝐹  Fn  dom  𝐹 ) | 
						
							| 27 | 25 26 | mpbi | ⊢ 𝐹  Fn  dom  𝐹 | 
						
							| 28 | 24 | simpri | ⊢ Lim  dom  𝐹 | 
						
							| 29 |  | limord | ⊢ ( Lim  dom  𝐹  →  Ord  dom  𝐹 ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ Ord  dom  𝐹 | 
						
							| 31 |  | inss2 | ⊢ ( 𝑇  ∩  dom  𝐹 )  ⊆  dom  𝐹 | 
						
							| 32 | 13 31 | eqsstrdi | ⊢ ( 𝜑  →  dom  𝑂  ⊆  dom  𝐹 ) | 
						
							| 33 | 32 | sselda | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  𝑀  ∈  dom  𝐹 ) | 
						
							| 34 |  | ordelss | ⊢ ( ( Ord  dom  𝐹  ∧  𝑀  ∈  dom  𝐹 )  →  𝑀  ⊆  dom  𝐹 ) | 
						
							| 35 | 30 33 34 | sylancr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  𝑀  ⊆  dom  𝐹 ) | 
						
							| 36 |  | breq1 | ⊢ ( 𝑗  =  ( 𝐹 ‘ 𝑎 )  →  ( 𝑗 𝑅 ( 𝐹 ‘ 𝑀 )  ↔  ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 37 | 36 | ralima | ⊢ ( ( 𝐹  Fn  dom  𝐹  ∧  𝑀  ⊆  dom  𝐹 )  →  ( ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 )  ↔  ∀ 𝑎  ∈  𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 38 | 27 35 37 | sylancr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  ( ∀ 𝑗  ∈  ( 𝐹  “  𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 )  ↔  ∀ 𝑎  ∈  𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) | 
						
							| 39 | 23 38 | mpbid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  ∀ 𝑎  ∈  𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 40 | 39 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ∀ 𝑎  ∈  𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  𝑁  ∈  𝑀 ) | 
						
							| 42 | 9 40 41 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( 𝐹 ‘ 𝑁 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 43 | 1 2 3 4 5 6 7 | ordtypelem1 | ⊢ ( 𝜑  →  𝑂  =  ( 𝐹  ↾  𝑇 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  𝑂  =  ( 𝐹  ↾  𝑇 ) ) | 
						
							| 45 | 44 | fveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( 𝑂 ‘ 𝑁 )  =  ( ( 𝐹  ↾  𝑇 ) ‘ 𝑁 ) ) | 
						
							| 46 | 1 2 3 4 5 6 7 | ordtypelem2 | ⊢ ( 𝜑  →  Ord  𝑇 ) | 
						
							| 47 |  | inss1 | ⊢ ( 𝑇  ∩  dom  𝐹 )  ⊆  𝑇 | 
						
							| 48 | 13 47 | eqsstrdi | ⊢ ( 𝜑  →  dom  𝑂  ⊆  𝑇 ) | 
						
							| 49 | 48 | sselda | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  𝑀  ∈  𝑇 ) | 
						
							| 50 | 49 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  𝑀  ∈  𝑇 ) | 
						
							| 51 |  | ordelss | ⊢ ( ( Ord  𝑇  ∧  𝑀  ∈  𝑇 )  →  𝑀  ⊆  𝑇 ) | 
						
							| 52 | 46 50 51 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  𝑀  ⊆  𝑇 ) | 
						
							| 53 | 52 41 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  𝑁  ∈  𝑇 ) | 
						
							| 54 | 53 | fvresd | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( ( 𝐹  ↾  𝑇 ) ‘ 𝑁 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 55 | 45 54 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( 𝑂 ‘ 𝑁 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 56 | 44 | fveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( 𝑂 ‘ 𝑀 )  =  ( ( 𝐹  ↾  𝑇 ) ‘ 𝑀 ) ) | 
						
							| 57 | 50 | fvresd | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( ( 𝐹  ↾  𝑇 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 58 | 56 57 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( 𝑂 ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 59 | 42 55 58 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  dom  𝑂  ∧  𝑁  ∈  𝑀 ) )  →  ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) | 
						
							| 60 | 59 | expr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  dom  𝑂 )  →  ( 𝑁  ∈  𝑀  →  ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) ) |