Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
⊢ 𝐹 = recs ( 𝐺 ) |
2 |
|
ordtypelem.2 |
⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
3 |
|
ordtypelem.3 |
⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) |
4 |
|
ordtypelem.5 |
⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } |
5 |
|
ordtypelem.6 |
⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) |
6 |
|
ordtypelem.7 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
7 |
|
ordtypelem.8 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
8 |
|
fveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑁 ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ( 𝐹 ‘ 𝑁 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
10 |
|
ssrab2 |
⊢ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ⊆ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ dom 𝑂 ) |
12 |
1 2 3 4 5 6 7
|
ordtypelem4 |
⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
13 |
12
|
fdmd |
⊢ ( 𝜑 → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → dom 𝑂 = ( 𝑇 ∩ dom 𝐹 ) ) |
15 |
11 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) |
16 |
1 2 3 4 5 6 7
|
ordtypelem3 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 𝑇 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
17 |
15 16
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ∣ ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 } ) |
18 |
10 17
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝐹 ‘ 𝑀 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ) |
19 |
|
breq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑀 ) → ( 𝑗 𝑅 𝑤 ↔ 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑀 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 ↔ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
21 |
20
|
elrab |
⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } ↔ ( ( 𝐹 ‘ 𝑀 ) ∈ 𝐴 ∧ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
22 |
21
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑀 ) ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 𝑤 } → ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
23 |
18 22
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
24 |
1
|
tfr1a |
⊢ ( Fun 𝐹 ∧ Lim dom 𝐹 ) |
25 |
24
|
simpli |
⊢ Fun 𝐹 |
26 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
27 |
25 26
|
mpbi |
⊢ 𝐹 Fn dom 𝐹 |
28 |
24
|
simpri |
⊢ Lim dom 𝐹 |
29 |
|
limord |
⊢ ( Lim dom 𝐹 → Ord dom 𝐹 ) |
30 |
28 29
|
ax-mp |
⊢ Ord dom 𝐹 |
31 |
|
inss2 |
⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
32 |
13 31
|
eqsstrdi |
⊢ ( 𝜑 → dom 𝑂 ⊆ dom 𝐹 ) |
33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ dom 𝐹 ) |
34 |
|
ordelss |
⊢ ( ( Ord dom 𝐹 ∧ 𝑀 ∈ dom 𝐹 ) → 𝑀 ⊆ dom 𝐹 ) |
35 |
30 33 34
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ⊆ dom 𝐹 ) |
36 |
|
breq1 |
⊢ ( 𝑗 = ( 𝐹 ‘ 𝑎 ) → ( 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
37 |
36
|
ralima |
⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑀 ⊆ dom 𝐹 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
38 |
27 35 37
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( ∀ 𝑗 ∈ ( 𝐹 “ 𝑀 ) 𝑗 𝑅 ( 𝐹 ‘ 𝑀 ) ↔ ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) ) |
39 |
23 38
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
40 |
39
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ∀ 𝑎 ∈ 𝑀 ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
41 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑁 ∈ 𝑀 ) |
42 |
9 40 41
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝐹 ‘ 𝑁 ) 𝑅 ( 𝐹 ‘ 𝑀 ) ) |
43 |
1 2 3 4 5 6 7
|
ordtypelem1 |
⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |
45 |
44
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑁 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑁 ) ) |
46 |
1 2 3 4 5 6 7
|
ordtypelem2 |
⊢ ( 𝜑 → Ord 𝑇 ) |
47 |
|
inss1 |
⊢ ( 𝑇 ∩ dom 𝐹 ) ⊆ 𝑇 |
48 |
13 47
|
eqsstrdi |
⊢ ( 𝜑 → dom 𝑂 ⊆ 𝑇 ) |
49 |
48
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → 𝑀 ∈ 𝑇 ) |
50 |
49
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑀 ∈ 𝑇 ) |
51 |
|
ordelss |
⊢ ( ( Ord 𝑇 ∧ 𝑀 ∈ 𝑇 ) → 𝑀 ⊆ 𝑇 ) |
52 |
46 50 51
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑀 ⊆ 𝑇 ) |
53 |
52 41
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → 𝑁 ∈ 𝑇 ) |
54 |
53
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
55 |
45 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
56 |
44
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑀 ) = ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑀 ) ) |
57 |
50
|
fvresd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑇 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
58 |
56 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
59 |
42 55 58
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ dom 𝑂 ∧ 𝑁 ∈ 𝑀 ) ) → ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) |
60 |
59
|
expr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ dom 𝑂 ) → ( 𝑁 ∈ 𝑀 → ( 𝑂 ‘ 𝑁 ) 𝑅 ( 𝑂 ‘ 𝑀 ) ) ) |