Metamath Proof Explorer


Theorem ordtypelem7

Description: Lemma for ordtype . ran O is an initial segment of A under the well-order R . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
Assertion ordtypelem7 φNAMdomOOMRNNranO

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 eldif NAranONA¬NranO
9 1 2 3 4 5 6 7 ordtypelem4 φO:TdomFA
10 9 adantr φNAranOO:TdomFA
11 10 fdmd φNAranOdomO=TdomF
12 inss1 TdomFT
13 1 2 3 4 5 6 7 ordtypelem2 φOrdT
14 13 adantr φNAranOOrdT
15 ordsson OrdTTOn
16 14 15 syl φNAranOTOn
17 12 16 sstrid φNAranOTdomFOn
18 11 17 eqsstrd φNAranOdomOOn
19 18 sseld φNAranOMdomOMOn
20 eleq1 a=badomObdomO
21 fveq2 a=bOa=Ob
22 21 breq1d a=bOaRNObRN
23 20 22 imbi12d a=badomOOaRNbdomOObRN
24 23 imbi2d a=bφNAranOadomOOaRNφNAranObdomOObRN
25 eleq1 a=MadomOMdomO
26 fveq2 a=MOa=OM
27 26 breq1d a=MOaRNOMRN
28 25 27 imbi12d a=MadomOOaRNMdomOOMRN
29 28 imbi2d a=MφNAranOadomOOaRNφNAranOMdomOOMRN
30 r19.21v baφNAranObdomOObRNφNAranObabdomOObRN
31 1 tfr1a FunFLimdomF
32 31 simpri LimdomF
33 limord LimdomFOrddomF
34 32 33 ax-mp OrddomF
35 ordin OrdTOrddomFOrdTdomF
36 14 34 35 sylancl φNAranOOrdTdomF
37 ordeq domO=TdomFOrddomOOrdTdomF
38 11 37 syl φNAranOOrddomOOrdTdomF
39 36 38 mpbird φNAranOOrddomO
40 ordelss OrddomOadomOadomO
41 39 40 sylan φNAranOadomOadomO
42 41 sselda φNAranOadomObabdomO
43 pm5.5 bdomObdomOObRNObRN
44 42 43 syl φNAranOadomObabdomOObRNObRN
45 44 ralbidva φNAranOadomObabdomOObRNbaObRN
46 eldifn NAranO¬NranO
47 46 ad2antlr φNAranOadomObaObRN¬NranO
48 9 ad2antrr φNAranOadomObaObRNO:TdomFA
49 48 ffnd φNAranOadomObaObRNOFnTdomF
50 simprl φNAranOadomObaObRNadomO
51 48 fdmd φNAranOadomObaObRNdomO=TdomF
52 50 51 eleqtrd φNAranOadomObaObRNaTdomF
53 fnfvelrn OFnTdomFaTdomFOaranO
54 49 52 53 syl2anc φNAranOadomObaObRNOaranO
55 eleq1 Oa=NOaranONranO
56 54 55 syl5ibcom φNAranOadomObaObRNOa=NNranO
57 47 56 mtod φNAranOadomObaObRN¬Oa=N
58 breq1 u=NuROaNROa
59 58 notbid u=N¬uROa¬NROa
60 1 2 3 4 5 6 7 ordtypelem1 φO=FT
61 60 ad2antrr φNAranOadomObaObRNO=FT
62 61 fveq1d φNAranOadomObaObRNOa=FTa
63 52 elin1d φNAranOadomObaObRNaT
64 63 fvresd φNAranOadomObaObRNFTa=Fa
65 62 64 eqtrd φNAranOadomObaObRNOa=Fa
66 simpll φNAranOadomObaObRNφ
67 1 2 3 4 5 6 7 ordtypelem3 φaTdomFFavwA|jFajRw|uwA|jFajRw¬uRv
68 66 52 67 syl2anc φNAranOadomObaObRNFavwA|jFajRw|uwA|jFajRw¬uRv
69 65 68 eqeltrd φNAranOadomObaObRNOavwA|jFajRw|uwA|jFajRw¬uRv
70 breq2 v=OauRvuROa
71 70 notbid v=Oa¬uRv¬uROa
72 71 ralbidv v=OauwA|jFajRw¬uRvuwA|jFajRw¬uROa
73 72 elrab OavwA|jFajRw|uwA|jFajRw¬uRvOawA|jFajRwuwA|jFajRw¬uROa
74 73 simprbi OavwA|jFajRw|uwA|jFajRw¬uRvuwA|jFajRw¬uROa
75 69 74 syl φNAranOadomObaObRNuwA|jFajRw¬uROa
76 breq2 w=NjRwjRN
77 76 ralbidv w=NjFajRwjFajRN
78 eldifi NAranONA
79 78 ad2antlr φNAranOadomObaObRNNA
80 simprr φNAranOadomObaObRNbaObRN
81 41 adantrr φNAranOadomObaObRNadomO
82 48 81 fssdmd φNAranOadomObaObRNaTdomF
83 82 12 sstrdi φNAranOadomObaObRNaT
84 fveq1 O=FTOb=FTb
85 ssel2 aTbabT
86 85 fvresd aTbaFTb=Fb
87 84 86 sylan9eq O=FTaTbaOb=Fb
88 87 anassrs O=FTaTbaOb=Fb
89 88 breq1d O=FTaTbaObRNFbRN
90 89 ralbidva O=FTaTbaObRNbaFbRN
91 61 83 90 syl2anc φNAranOadomObaObRNbaObRNbaFbRN
92 80 91 mpbid φNAranOadomObaObRNbaFbRN
93 31 simpli FunF
94 funfn FunFFFndomF
95 93 94 mpbi FFndomF
96 inss2 TdomFdomF
97 82 96 sstrdi φNAranOadomObaObRNadomF
98 breq1 j=FbjRNFbRN
99 98 ralima FFndomFadomFjFajRNbaFbRN
100 95 97 99 sylancr φNAranOadomObaObRNjFajRNbaFbRN
101 92 100 mpbird φNAranOadomObaObRNjFajRN
102 77 79 101 elrabd φNAranOadomObaObRNNwA|jFajRw
103 59 75 102 rspcdva φNAranOadomObaObRN¬NROa
104 weso RWeAROrA
105 6 104 syl φROrA
106 105 ad2antrr φNAranOadomObaObRNROrA
107 48 52 ffvelcdmd φNAranOadomObaObRNOaA
108 sotric ROrAOaANAOaRN¬Oa=NNROa
109 106 107 79 108 syl12anc φNAranOadomObaObRNOaRN¬Oa=NNROa
110 ioran ¬Oa=NNROa¬Oa=N¬NROa
111 109 110 bitrdi φNAranOadomObaObRNOaRN¬Oa=N¬NROa
112 57 103 111 mpbir2and φNAranOadomObaObRNOaRN
113 112 expr φNAranOadomObaObRNOaRN
114 45 113 sylbid φNAranOadomObabdomOObRNOaRN
115 114 ex φNAranOadomObabdomOObRNOaRN
116 115 com23 φNAranObabdomOObRNadomOOaRN
117 116 a2i φNAranObabdomOObRNφNAranOadomOOaRN
118 117 a1i aOnφNAranObabdomOObRNφNAranOadomOOaRN
119 30 118 biimtrid aOnbaφNAranObdomOObRNφNAranOadomOOaRN
120 24 29 119 tfis3 MOnφNAranOMdomOOMRN
121 120 com3l φNAranOMdomOMOnOMRN
122 19 121 mpdd φNAranOMdomOOMRN
123 8 122 sylan2br φNA¬NranOMdomOOMRN
124 123 anassrs φNA¬NranOMdomOOMRN
125 124 impancom φNAMdomO¬NranOOMRN
126 125 orrd φNAMdomONranOOMRN
127 126 orcomd φNAMdomOOMRNNranO