Metamath Proof Explorer


Theorem ps-2b

Description: Variation of projective geometry axiom ps-2 . (Contributed by NM, 3-Jul-2012)

Ref Expression
Hypotheses ps-2b.l
|- .<_ = ( le ` K )
ps-2b.j
|- .\/ = ( join ` K )
ps-2b.m
|- ./\ = ( meet ` K )
ps-2b.z
|- .0. = ( 0. ` K )
ps-2b.a
|- A = ( Atoms ` K )
Assertion ps-2b
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= .0. )

Proof

Step Hyp Ref Expression
1 ps-2b.l
 |-  .<_ = ( le ` K )
2 ps-2b.j
 |-  .\/ = ( join ` K )
3 ps-2b.m
 |-  ./\ = ( meet ` K )
4 ps-2b.z
 |-  .0. = ( 0. ` K )
5 ps-2b.a
 |-  A = ( Atoms ` K )
6 simp11
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> K e. HL )
7 simp12
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> P e. A )
8 simp13
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> Q e. A )
9 simp21
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> R e. A )
10 7 8 9 3jca
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P e. A /\ Q e. A /\ R e. A ) )
11 simp22
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> S e. A )
12 simp23
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T e. A )
13 11 12 jca
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( S e. A /\ T e. A ) )
14 simp31
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> -. P .<_ ( Q .\/ R ) )
15 simp32
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> S =/= T )
16 14 15 jca
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) )
17 simp33
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) )
18 1 2 5 ps-2
 |-  ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) )
19 6 10 13 16 17 18 syl32anc
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) )
20 simp111
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> K e. HL )
21 hlatl
 |-  ( K e. HL -> K e. AtLat )
22 20 21 syl
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> K e. AtLat )
23 20 hllatd
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> K e. Lat )
24 simp112
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> P e. A )
25 simp121
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> R e. A )
26 eqid
 |-  ( Base ` K ) = ( Base ` K )
27 26 2 5 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) )
28 20 24 25 27 syl3anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> ( P .\/ R ) e. ( Base ` K ) )
29 simp122
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> S e. A )
30 simp123
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> T e. A )
31 26 2 5 hlatjcl
 |-  ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) )
32 20 29 30 31 syl3anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> ( S .\/ T ) e. ( Base ` K ) )
33 26 3 latmcl
 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) e. ( Base ` K ) )
34 23 28 32 33 syl3anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) e. ( Base ` K ) )
35 simp2
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> u e. A )
36 simp3
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) )
37 26 5 atbase
 |-  ( u e. A -> u e. ( Base ` K ) )
38 35 37 syl
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> u e. ( Base ` K ) )
39 26 1 3 latlem12
 |-  ( ( K e. Lat /\ ( u e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) <-> u .<_ ( ( P .\/ R ) ./\ ( S .\/ T ) ) ) )
40 23 38 28 32 39 syl13anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> ( ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) <-> u .<_ ( ( P .\/ R ) ./\ ( S .\/ T ) ) ) )
41 36 40 mpbid
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> u .<_ ( ( P .\/ R ) ./\ ( S .\/ T ) ) )
42 26 1 4 5 atlen0
 |-  ( ( ( K e. AtLat /\ ( ( P .\/ R ) ./\ ( S .\/ T ) ) e. ( Base ` K ) /\ u e. A ) /\ u .<_ ( ( P .\/ R ) ./\ ( S .\/ T ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= .0. )
43 22 34 35 41 42 syl31anc
 |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) /\ u e. A /\ ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= .0. )
44 43 rexlimdv3a
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= .0. ) )
45 19 44 mpd
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) ./\ ( S .\/ T ) ) =/= .0. )