| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimcxp.1 |
|- ( ( ph /\ n e. A ) -> B e. V ) |
| 2 |
|
rlimcxp.2 |
|- ( ph -> ( n e. A |-> B ) ~~>r 0 ) |
| 3 |
|
rlimcxp.3 |
|- ( ph -> C e. RR+ ) |
| 4 |
|
rlimf |
|- ( ( n e. A |-> B ) ~~>r 0 -> ( n e. A |-> B ) : dom ( n e. A |-> B ) --> CC ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( n e. A |-> B ) : dom ( n e. A |-> B ) --> CC ) |
| 6 |
1
|
ralrimiva |
|- ( ph -> A. n e. A B e. V ) |
| 7 |
|
dmmptg |
|- ( A. n e. A B e. V -> dom ( n e. A |-> B ) = A ) |
| 8 |
6 7
|
syl |
|- ( ph -> dom ( n e. A |-> B ) = A ) |
| 9 |
8
|
feq2d |
|- ( ph -> ( ( n e. A |-> B ) : dom ( n e. A |-> B ) --> CC <-> ( n e. A |-> B ) : A --> CC ) ) |
| 10 |
5 9
|
mpbid |
|- ( ph -> ( n e. A |-> B ) : A --> CC ) |
| 11 |
|
eqid |
|- ( n e. A |-> B ) = ( n e. A |-> B ) |
| 12 |
11
|
fmpt |
|- ( A. n e. A B e. CC <-> ( n e. A |-> B ) : A --> CC ) |
| 13 |
10 12
|
sylibr |
|- ( ph -> A. n e. A B e. CC ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> A. n e. A B e. CC ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> C e. RR+ ) |
| 17 |
16
|
rprecred |
|- ( ( ph /\ x e. RR+ ) -> ( 1 / C ) e. RR ) |
| 18 |
15 17
|
rpcxpcld |
|- ( ( ph /\ x e. RR+ ) -> ( x ^c ( 1 / C ) ) e. RR+ ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( n e. A |-> B ) ~~>r 0 ) |
| 20 |
14 18 19
|
rlimi |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) ) |
| 21 |
1 2
|
rlimmptrcl |
|- ( ( ph /\ n e. A ) -> B e. CC ) |
| 22 |
21
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> B e. CC ) |
| 23 |
22
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( abs ` B ) e. RR ) |
| 24 |
22
|
absge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> 0 <_ ( abs ` B ) ) |
| 25 |
18
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( 1 / C ) ) e. RR+ ) |
| 26 |
25
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( 1 / C ) ) e. RR ) |
| 27 |
25
|
rpge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> 0 <_ ( x ^c ( 1 / C ) ) ) |
| 28 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C e. RR+ ) |
| 29 |
23 24 26 27 28
|
cxplt2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` B ) < ( x ^c ( 1 / C ) ) <-> ( ( abs ` B ) ^c C ) < ( ( x ^c ( 1 / C ) ) ^c C ) ) ) |
| 30 |
22
|
subid1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( B - 0 ) = B ) |
| 31 |
30
|
fveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
| 32 |
31
|
breq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) <-> ( abs ` B ) < ( x ^c ( 1 / C ) ) ) ) |
| 33 |
28
|
rpred |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C e. RR ) |
| 34 |
|
abscxp2 |
|- ( ( B e. CC /\ C e. RR ) -> ( abs ` ( B ^c C ) ) = ( ( abs ` B ) ^c C ) ) |
| 35 |
22 33 34
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( abs ` ( B ^c C ) ) = ( ( abs ` B ) ^c C ) ) |
| 36 |
28
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C e. CC ) |
| 37 |
28
|
rpne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> C =/= 0 ) |
| 38 |
36 37
|
recid2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( 1 / C ) x. C ) = 1 ) |
| 39 |
38
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( ( 1 / C ) x. C ) ) = ( x ^c 1 ) ) |
| 40 |
|
simplr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> x e. RR+ ) |
| 41 |
17
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( 1 / C ) e. RR ) |
| 42 |
40 41 36
|
cxpmuld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c ( ( 1 / C ) x. C ) ) = ( ( x ^c ( 1 / C ) ) ^c C ) ) |
| 43 |
40
|
rpcnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> x e. CC ) |
| 44 |
43
|
cxp1d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( x ^c 1 ) = x ) |
| 45 |
39 42 44
|
3eqtr3rd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> x = ( ( x ^c ( 1 / C ) ) ^c C ) ) |
| 46 |
35 45
|
breq12d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B ^c C ) ) < x <-> ( ( abs ` B ) ^c C ) < ( ( x ^c ( 1 / C ) ) ^c C ) ) ) |
| 47 |
29 32 46
|
3bitr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) <-> ( abs ` ( B ^c C ) ) < x ) ) |
| 48 |
47
|
biimpd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) -> ( abs ` ( B ^c C ) ) < x ) ) |
| 49 |
48
|
imim2d |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. A ) -> ( ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) -> ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
| 50 |
49
|
ralimdva |
|- ( ( ph /\ x e. RR+ ) -> ( A. n e. A ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) -> A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
| 51 |
50
|
reximdv |
|- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B - 0 ) ) < ( x ^c ( 1 / C ) ) ) -> E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
| 52 |
20 51
|
mpd |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) |
| 53 |
52
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) |
| 54 |
3
|
rpcnd |
|- ( ph -> C e. CC ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ n e. A ) -> C e. CC ) |
| 56 |
21 55
|
cxpcld |
|- ( ( ph /\ n e. A ) -> ( B ^c C ) e. CC ) |
| 57 |
56
|
ralrimiva |
|- ( ph -> A. n e. A ( B ^c C ) e. CC ) |
| 58 |
|
rlimss |
|- ( ( n e. A |-> B ) ~~>r 0 -> dom ( n e. A |-> B ) C_ RR ) |
| 59 |
2 58
|
syl |
|- ( ph -> dom ( n e. A |-> B ) C_ RR ) |
| 60 |
8 59
|
eqsstrrd |
|- ( ph -> A C_ RR ) |
| 61 |
57 60
|
rlim0 |
|- ( ph -> ( ( n e. A |-> ( B ^c C ) ) ~~>r 0 <-> A. x e. RR+ E. y e. RR A. n e. A ( y <_ n -> ( abs ` ( B ^c C ) ) < x ) ) ) |
| 62 |
53 61
|
mpbird |
|- ( ph -> ( n e. A |-> ( B ^c C ) ) ~~>r 0 ) |