| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
| 2 |
|
zaddcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
| 3 |
2
|
3adant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
| 4 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + N ) e. ZZ ) -> ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) ) |
| 5 |
1 3 4
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) ) |
| 6 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> A e. ZZ ) |
| 8 |
7
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> A e. CC ) |
| 9 |
|
zq |
|- ( A e. ZZ -> A e. QQ ) |
| 10 |
|
qsqcl |
|- ( A e. QQ -> ( A ^ 2 ) e. QQ ) |
| 11 |
7 9 10
|
3syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A ^ 2 ) e. QQ ) |
| 12 |
|
zssq |
|- ZZ C_ QQ |
| 13 |
|
1z |
|- 1 e. ZZ |
| 14 |
12 13
|
sselii |
|- 1 e. QQ |
| 15 |
14
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> 1 e. QQ ) |
| 16 |
|
qsubcl |
|- ( ( ( A ^ 2 ) e. QQ /\ 1 e. QQ ) -> ( ( A ^ 2 ) - 1 ) e. QQ ) |
| 17 |
11 15 16
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. QQ ) |
| 18 |
|
qcn |
|- ( ( ( A ^ 2 ) - 1 ) e. QQ -> ( ( A ^ 2 ) - 1 ) e. CC ) |
| 19 |
17 18
|
syl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
| 20 |
19
|
sqrtcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. CC ) |
| 21 |
8 20
|
addcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC ) |
| 22 |
|
rmbaserp |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. RR+ ) |
| 23 |
22
|
rpne0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) |
| 25 |
|
simp2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
| 26 |
|
simp3 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
| 27 |
|
expaddz |
|- ( ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) e. CC /\ ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
| 28 |
21 24 25 26 27
|
syl22anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
| 29 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
| 30 |
29
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 ) |
| 31 |
30 1 25
|
fovcdmd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX M ) e. NN0 ) |
| 32 |
31
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX M ) e. CC ) |
| 33 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 34 |
33
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ ) |
| 35 |
34 1 25
|
fovcdmd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY M ) e. ZZ ) |
| 36 |
35
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY M ) e. CC ) |
| 37 |
20 36
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) e. CC ) |
| 38 |
30 1 26
|
fovcdmd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
| 39 |
38
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
| 40 |
34 1 26
|
fovcdmd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
| 41 |
40
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
| 42 |
20 41
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) e. CC ) |
| 43 |
32 37 39 42
|
muladdd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) x. ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) + ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) ) ) |
| 44 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) ) |
| 45 |
1 25 44
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) ) |
| 46 |
|
rmxyval |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
| 47 |
1 26 46
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) |
| 48 |
45 47
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) x. ( ( A rmX N ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
| 49 |
43 48
|
eqtr3d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) + ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) ) = ( ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ M ) x. ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ N ) ) ) |
| 50 |
20 41 20 36
|
mul4d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) x. ( ( A rmY N ) x. ( A rmY M ) ) ) ) |
| 51 |
19
|
msqsqrtd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) = ( ( A ^ 2 ) - 1 ) ) |
| 52 |
41 36
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmY N ) x. ( A rmY M ) ) = ( ( A rmY M ) x. ( A rmY N ) ) ) |
| 53 |
51 52
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) x. ( ( A rmY N ) x. ( A rmY M ) ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) |
| 54 |
50 53
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) |
| 55 |
54
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) ) |
| 56 |
32 20 41
|
mul12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
| 57 |
39 20 36
|
mul12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX N ) x. ( A rmY M ) ) ) ) |
| 58 |
56 57
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX M ) x. ( A rmY N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX N ) x. ( A rmY M ) ) ) ) ) |
| 59 |
32 41
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( A rmY N ) ) e. CC ) |
| 60 |
39 36
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY M ) ) e. CC ) |
| 61 |
20 59 60
|
adddid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) ) = ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX M ) x. ( A rmY N ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( A rmX N ) x. ( A rmY M ) ) ) ) ) |
| 62 |
59 60
|
addcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) = ( ( ( A rmX N ) x. ( A rmY M ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
| 63 |
39 36
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY M ) ) = ( ( A rmY M ) x. ( A rmX N ) ) ) |
| 64 |
63
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmY M ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
| 65 |
62 64
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) |
| 66 |
65
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmX M ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY M ) ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) |
| 67 |
58 61 66
|
3eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) = ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) |
| 68 |
55 67
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) + ( ( ( A rmX M ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY N ) ) ) + ( ( A rmX N ) x. ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY M ) ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
| 69 |
28 49 68
|
3eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A + ( sqrt ` ( ( A ^ 2 ) - 1 ) ) ) ^ ( M + N ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
| 70 |
5 69
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
| 71 |
|
rmspecsqrtnq |
|- ( A e. ( ZZ>= ` 2 ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
| 72 |
71
|
3ad2ant1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) ) |
| 73 |
|
nn0ssq |
|- NN0 C_ QQ |
| 74 |
30 1 3
|
fovcdmd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX ( M + N ) ) e. NN0 ) |
| 75 |
73 74
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX ( M + N ) ) e. QQ ) |
| 76 |
34 1 3
|
fovcdmd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY ( M + N ) ) e. ZZ ) |
| 77 |
12 76
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY ( M + N ) ) e. QQ ) |
| 78 |
73 31
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX M ) e. QQ ) |
| 79 |
73 38
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmX N ) e. QQ ) |
| 80 |
|
qmulcl |
|- ( ( ( A rmX M ) e. QQ /\ ( A rmX N ) e. QQ ) -> ( ( A rmX M ) x. ( A rmX N ) ) e. QQ ) |
| 81 |
78 79 80
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( A rmX N ) ) e. QQ ) |
| 82 |
12 35
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY M ) e. QQ ) |
| 83 |
12 40
|
sselid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( A rmY N ) e. QQ ) |
| 84 |
|
qmulcl |
|- ( ( ( A rmY M ) e. QQ /\ ( A rmY N ) e. QQ ) -> ( ( A rmY M ) x. ( A rmY N ) ) e. QQ ) |
| 85 |
82 83 84
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmY M ) x. ( A rmY N ) ) e. QQ ) |
| 86 |
|
qmulcl |
|- ( ( ( ( A ^ 2 ) - 1 ) e. QQ /\ ( ( A rmY M ) x. ( A rmY N ) ) e. QQ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) e. QQ ) |
| 87 |
17 85 86
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) e. QQ ) |
| 88 |
|
qaddcl |
|- ( ( ( ( A rmX M ) x. ( A rmX N ) ) e. QQ /\ ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) e. QQ ) -> ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) e. QQ ) |
| 89 |
81 87 88
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) e. QQ ) |
| 90 |
|
qmulcl |
|- ( ( ( A rmY M ) e. QQ /\ ( A rmX N ) e. QQ ) -> ( ( A rmY M ) x. ( A rmX N ) ) e. QQ ) |
| 91 |
82 79 90
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmY M ) x. ( A rmX N ) ) e. QQ ) |
| 92 |
|
qmulcl |
|- ( ( ( A rmX M ) e. QQ /\ ( A rmY N ) e. QQ ) -> ( ( A rmX M ) x. ( A rmY N ) ) e. QQ ) |
| 93 |
78 83 92
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX M ) x. ( A rmY N ) ) e. QQ ) |
| 94 |
|
qaddcl |
|- ( ( ( ( A rmY M ) x. ( A rmX N ) ) e. QQ /\ ( ( A rmX M ) x. ( A rmY N ) ) e. QQ ) -> ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) e. QQ ) |
| 95 |
91 93 94
|
syl2anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) e. QQ ) |
| 96 |
|
qirropth |
|- ( ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) e. ( CC \ QQ ) /\ ( ( A rmX ( M + N ) ) e. QQ /\ ( A rmY ( M + N ) ) e. QQ ) /\ ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) e. QQ /\ ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) e. QQ ) ) -> ( ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) <-> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
| 97 |
72 75 77 89 95 96
|
syl122anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( A rmX ( M + N ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( A rmY ( M + N ) ) ) ) = ( ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) + ( ( sqrt ` ( ( A ^ 2 ) - 1 ) ) x. ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) <-> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) ) |
| 98 |
70 97
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( A rmX ( M + N ) ) = ( ( ( A rmX M ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY M ) x. ( A rmY N ) ) ) ) /\ ( A rmY ( M + N ) ) = ( ( ( A rmY M ) x. ( A rmX N ) ) + ( ( A rmX M ) x. ( A rmY N ) ) ) ) ) |