| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntrval.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | reex |  |-  RR e. _V | 
						
							| 3 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 4 | 2 3 | ssexi |  |-  RR+ e. _V | 
						
							| 5 | 4 | a1i |  |-  ( T. -> RR+ e. _V ) | 
						
							| 6 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. _V ) | 
						
							| 7 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) e. _V ) | 
						
							| 8 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) | 
						
							| 9 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) | 
						
							| 10 | 5 6 7 8 9 | offval2 |  |-  ( T. -> ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) ) | 
						
							| 11 | 10 | mptru |  |-  ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) | 
						
							| 12 | 1 | pntrf |  |-  R : RR+ --> RR | 
						
							| 13 | 12 | ffvelcdmi |  |-  ( x e. RR+ -> ( R ` x ) e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( x e. RR+ -> ( R ` x ) e. CC ) | 
						
							| 15 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 16 | 15 | recnd |  |-  ( x e. RR+ -> ( log ` x ) e. CC ) | 
						
							| 17 | 14 16 | mulcld |  |-  ( x e. RR+ -> ( ( R ` x ) x. ( log ` x ) ) e. CC ) | 
						
							| 18 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 19 |  | elfznn |  |-  ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) | 
						
							| 20 | 19 | adantl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) | 
						
							| 21 |  | vmacl |  |-  ( d e. NN -> ( Lam ` d ) e. RR ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` d ) e. CC ) | 
						
							| 24 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 25 |  | nndivre |  |-  ( ( x e. RR /\ d e. NN ) -> ( x / d ) e. RR ) | 
						
							| 26 | 24 19 25 | syl2an |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR ) | 
						
							| 27 |  | chpcl |  |-  ( ( x / d ) e. RR -> ( psi ` ( x / d ) ) e. RR ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / d ) ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / d ) ) e. CC ) | 
						
							| 30 | 23 29 | mulcld |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) e. CC ) | 
						
							| 31 | 18 30 | fsumcl |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) e. CC ) | 
						
							| 32 | 17 31 | addcld |  |-  ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC ) | 
						
							| 33 |  | rpcn |  |-  ( x e. RR+ -> x e. CC ) | 
						
							| 34 |  | rpne0 |  |-  ( x e. RR+ -> x =/= 0 ) | 
						
							| 35 | 32 33 34 | divcld |  |-  ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) e. CC ) | 
						
							| 36 | 22 20 | nndivred |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) / d ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) / d ) e. CC ) | 
						
							| 38 | 18 37 | fsumcl |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) e. CC ) | 
						
							| 39 | 35 38 16 | nnncan2d |  |-  ( x e. RR+ -> ( ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) | 
						
							| 40 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 41 | 24 40 | syl |  |-  ( x e. RR+ -> ( psi ` x ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( x e. RR+ -> ( psi ` x ) e. CC ) | 
						
							| 43 | 42 16 | mulcld |  |-  ( x e. RR+ -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) | 
						
							| 44 | 43 31 | addcld |  |-  ( x e. RR+ -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC ) | 
						
							| 45 | 44 33 34 | divcld |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) e. CC ) | 
						
							| 46 | 45 16 16 | subsub4d |  |-  ( x e. RR+ -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( log ` x ) + ( log ` x ) ) ) ) | 
						
							| 47 | 1 | pntrval |  |-  ( x e. RR+ -> ( R ` x ) = ( ( psi ` x ) - x ) ) | 
						
							| 48 | 47 | oveq1d |  |-  ( x e. RR+ -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) - x ) x. ( log ` x ) ) ) | 
						
							| 49 | 42 33 16 | subdird |  |-  ( x e. RR+ -> ( ( ( psi ` x ) - x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) | 
						
							| 50 | 48 49 | eqtrd |  |-  ( x e. RR+ -> ( ( R ` x ) x. ( log ` x ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) ) | 
						
							| 52 | 33 16 | mulcld |  |-  ( x e. RR+ -> ( x x. ( log ` x ) ) e. CC ) | 
						
							| 53 | 43 31 52 | addsubd |  |-  ( x e. RR+ -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( x x. ( log ` x ) ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) ) | 
						
							| 54 | 51 53 | eqtr4d |  |-  ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) ) | 
						
							| 55 | 54 | oveq1d |  |-  ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) ) | 
						
							| 56 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 57 |  | divsubdir |  |-  ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC /\ ( x x. ( log ` x ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) ) | 
						
							| 58 | 44 52 56 57 | syl3anc |  |-  ( x e. RR+ -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. ( log ` x ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) ) | 
						
							| 59 | 16 33 34 | divcan3d |  |-  ( x e. RR+ -> ( ( x x. ( log ` x ) ) / x ) = ( log ` x ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( x e. RR+ -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. ( log ` x ) ) / x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) ) | 
						
							| 61 | 55 58 60 | 3eqtrd |  |-  ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( log ` x ) ) ) | 
						
							| 63 | 16 | 2timesd |  |-  ( x e. RR+ -> ( 2 x. ( log ` x ) ) = ( ( log ` x ) + ( log ` x ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( x e. RR+ -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( log ` x ) + ( log ` x ) ) ) ) | 
						
							| 65 | 46 62 64 | 3eqtr4d |  |-  ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) = ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( x e. RR+ -> ( ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( log ` x ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) | 
						
							| 67 | 33 38 | mulcld |  |-  ( x e. RR+ -> ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) e. CC ) | 
						
							| 68 |  | divsubdir |  |-  ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) e. CC /\ ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) / x ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) ) ) | 
						
							| 69 | 32 67 56 68 | syl3anc |  |-  ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) / x ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) ) ) | 
						
							| 70 | 17 31 67 | addsubassd |  |-  ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) ) ) | 
						
							| 71 | 33 | adantr |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 72 | 71 37 | mulcld |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( Lam ` d ) / d ) ) e. CC ) | 
						
							| 73 | 18 30 72 | fsumsub |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( Lam ` d ) / d ) ) ) ) | 
						
							| 74 | 26 | recnd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. CC ) | 
						
							| 75 | 23 29 74 | subdid |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( ( psi ` ( x / d ) ) - ( x / d ) ) ) = ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( ( Lam ` d ) x. ( x / d ) ) ) ) | 
						
							| 76 | 19 | nnrpd |  |-  ( d e. ( 1 ... ( |_ ` x ) ) -> d e. RR+ ) | 
						
							| 77 |  | rpdivcl |  |-  ( ( x e. RR+ /\ d e. RR+ ) -> ( x / d ) e. RR+ ) | 
						
							| 78 | 76 77 | sylan2 |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR+ ) | 
						
							| 79 | 1 | pntrval |  |-  ( ( x / d ) e. RR+ -> ( R ` ( x / d ) ) = ( ( psi ` ( x / d ) ) - ( x / d ) ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( R ` ( x / d ) ) = ( ( psi ` ( x / d ) ) - ( x / d ) ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) = ( ( Lam ` d ) x. ( ( psi ` ( x / d ) ) - ( x / d ) ) ) ) | 
						
							| 82 | 20 | nnrpd |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. RR+ ) | 
						
							| 83 |  | rpcnne0 |  |-  ( d e. RR+ -> ( d e. CC /\ d =/= 0 ) ) | 
						
							| 84 | 82 83 | syl |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( d e. CC /\ d =/= 0 ) ) | 
						
							| 85 |  | div12 |  |-  ( ( x e. CC /\ ( Lam ` d ) e. CC /\ ( d e. CC /\ d =/= 0 ) ) -> ( x x. ( ( Lam ` d ) / d ) ) = ( ( Lam ` d ) x. ( x / d ) ) ) | 
						
							| 86 | 71 23 84 85 | syl3anc |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x x. ( ( Lam ` d ) / d ) ) = ( ( Lam ` d ) x. ( x / d ) ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) = ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( ( Lam ` d ) x. ( x / d ) ) ) ) | 
						
							| 88 | 75 81 87 | 3eqtr4d |  |-  ( ( x e. RR+ /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) = ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) ) | 
						
							| 89 | 88 | sumeq2dv |  |-  ( x e. RR+ -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. ( ( Lam ` d ) / d ) ) ) ) | 
						
							| 90 | 18 33 37 | fsummulc2 |  |-  ( x e. RR+ -> ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( Lam ` d ) / d ) ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( x e. RR+ -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( x x. ( ( Lam ` d ) / d ) ) ) ) | 
						
							| 92 | 73 89 91 | 3eqtr4rd |  |-  ( x e. RR+ -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) | 
						
							| 93 | 92 | oveq2d |  |-  ( x e. RR+ -> ( ( ( R ` x ) x. ( log ` x ) ) + ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) ) | 
						
							| 94 | 70 93 | eqtrd |  |-  ( x e. RR+ -> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) = ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) ) | 
						
							| 95 | 94 | oveq1d |  |-  ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) - ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) / x ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) | 
						
							| 96 | 38 33 34 | divcan3d |  |-  ( x e. RR+ -> ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) | 
						
							| 97 | 96 | oveq2d |  |-  ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( ( x x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) / x ) ) = ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) ) | 
						
							| 98 | 69 95 97 | 3eqtr3rd |  |-  ( x e. RR+ -> ( ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) | 
						
							| 99 | 39 66 98 | 3eqtr3d |  |-  ( x e. RR+ -> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) = ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) | 
						
							| 100 | 99 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) | 
						
							| 101 | 11 100 | eqtri |  |-  ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) | 
						
							| 102 |  | selberg2 |  |-  ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 103 |  | vmadivsum |  |-  ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) e. O(1) | 
						
							| 104 |  | o1sub |  |-  ( ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) /\ ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 105 | 102 103 104 | mp2an |  |-  ( ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( psi ` ( x / d ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) oF - ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) / d ) - ( log ` x ) ) ) ) e. O(1) | 
						
							| 106 | 101 105 | eqeltrri |  |-  ( x e. RR+ |-> ( ( ( ( R ` x ) x. ( log ` x ) ) + sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` d ) x. ( R ` ( x / d ) ) ) ) / x ) ) e. O(1) |