| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
|- M = ( EndoFMnd ` NN0 ) |
| 2 |
|
smndex1ibas.n |
|- N e. NN |
| 3 |
|
smndex1ibas.i |
|- I = ( x e. NN0 |-> ( x mod N ) ) |
| 4 |
|
smndex1ibas.g |
|- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
| 5 |
|
smndex1mgm.b |
|- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
| 6 |
|
smndex1mgm.s |
|- S = ( M |`s B ) |
| 7 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 8 |
|
fveq2 |
|- ( x = N -> ( ( _I |` NN0 ) ` x ) = ( ( _I |` NN0 ) ` N ) ) |
| 9 |
2 7
|
ax-mp |
|- N e. NN0 |
| 10 |
|
fvresi |
|- ( N e. NN0 -> ( ( _I |` NN0 ) ` N ) = N ) |
| 11 |
9 10
|
ax-mp |
|- ( ( _I |` NN0 ) ` N ) = N |
| 12 |
8 11
|
eqtrdi |
|- ( x = N -> ( ( _I |` NN0 ) ` x ) = N ) |
| 13 |
|
fveq2 |
|- ( x = N -> ( I ` x ) = ( I ` N ) ) |
| 14 |
12 13
|
eqeq12d |
|- ( x = N -> ( ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> N = ( I ` N ) ) ) |
| 15 |
14
|
notbid |
|- ( x = N -> ( -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> -. N = ( I ` N ) ) ) |
| 16 |
15
|
adantl |
|- ( ( N e. NN /\ x = N ) -> ( -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> -. N = ( I ` N ) ) ) |
| 17 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 18 |
17
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
| 19 |
|
oveq1 |
|- ( x = N -> ( x mod N ) = ( N mod N ) ) |
| 20 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 21 |
|
modid0 |
|- ( N e. RR+ -> ( N mod N ) = 0 ) |
| 22 |
20 21
|
syl |
|- ( N e. NN -> ( N mod N ) = 0 ) |
| 23 |
19 22
|
sylan9eqr |
|- ( ( N e. NN /\ x = N ) -> ( x mod N ) = 0 ) |
| 24 |
|
c0ex |
|- 0 e. _V |
| 25 |
24
|
a1i |
|- ( N e. NN -> 0 e. _V ) |
| 26 |
3 23 7 25
|
fvmptd2 |
|- ( N e. NN -> ( I ` N ) = 0 ) |
| 27 |
26
|
eqeq2d |
|- ( N e. NN -> ( N = ( I ` N ) <-> N = 0 ) ) |
| 28 |
18 27
|
mtbird |
|- ( N e. NN -> -. N = ( I ` N ) ) |
| 29 |
7 16 28
|
rspcedvd |
|- ( N e. NN -> E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) |
| 30 |
2 29
|
ax-mp |
|- E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) |
| 31 |
|
rexnal |
|- ( E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( I ` x ) <-> -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) |
| 32 |
30 31
|
mpbi |
|- -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) |
| 33 |
|
fnresi |
|- ( _I |` NN0 ) Fn NN0 |
| 34 |
|
ovex |
|- ( x mod N ) e. _V |
| 35 |
34 3
|
fnmpti |
|- I Fn NN0 |
| 36 |
|
eqfnfv |
|- ( ( ( _I |` NN0 ) Fn NN0 /\ I Fn NN0 ) -> ( ( _I |` NN0 ) = I <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) ) |
| 37 |
33 35 36
|
mp2an |
|- ( ( _I |` NN0 ) = I <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( I ` x ) ) |
| 38 |
32 37
|
mtbir |
|- -. ( _I |` NN0 ) = I |
| 39 |
9
|
a1i |
|- ( n e. ( 0 ..^ N ) -> N e. NN0 ) |
| 40 |
|
fveq2 |
|- ( x = N -> ( ( G ` n ) ` x ) = ( ( G ` n ) ` N ) ) |
| 41 |
12 40
|
eqeq12d |
|- ( x = N -> ( ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> N = ( ( G ` n ) ` N ) ) ) |
| 42 |
41
|
notbid |
|- ( x = N -> ( -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> -. N = ( ( G ` n ) ` N ) ) ) |
| 43 |
42
|
adantl |
|- ( ( n e. ( 0 ..^ N ) /\ x = N ) -> ( -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> -. N = ( ( G ` n ) ` N ) ) ) |
| 44 |
|
fzonel |
|- -. N e. ( 0 ..^ N ) |
| 45 |
|
eleq1 |
|- ( n = N -> ( n e. ( 0 ..^ N ) <-> N e. ( 0 ..^ N ) ) ) |
| 46 |
45
|
eqcoms |
|- ( N = n -> ( n e. ( 0 ..^ N ) <-> N e. ( 0 ..^ N ) ) ) |
| 47 |
44 46
|
mtbiri |
|- ( N = n -> -. n e. ( 0 ..^ N ) ) |
| 48 |
47
|
con2i |
|- ( n e. ( 0 ..^ N ) -> -. N = n ) |
| 49 |
|
nn0ex |
|- NN0 e. _V |
| 50 |
49
|
mptex |
|- ( x e. NN0 |-> n ) e. _V |
| 51 |
4
|
fvmpt2 |
|- ( ( n e. ( 0 ..^ N ) /\ ( x e. NN0 |-> n ) e. _V ) -> ( G ` n ) = ( x e. NN0 |-> n ) ) |
| 52 |
50 51
|
mpan2 |
|- ( n e. ( 0 ..^ N ) -> ( G ` n ) = ( x e. NN0 |-> n ) ) |
| 53 |
|
eqidd |
|- ( ( n e. ( 0 ..^ N ) /\ x = N ) -> n = n ) |
| 54 |
|
id |
|- ( n e. ( 0 ..^ N ) -> n e. ( 0 ..^ N ) ) |
| 55 |
52 53 39 54
|
fvmptd |
|- ( n e. ( 0 ..^ N ) -> ( ( G ` n ) ` N ) = n ) |
| 56 |
55
|
eqeq2d |
|- ( n e. ( 0 ..^ N ) -> ( N = ( ( G ` n ) ` N ) <-> N = n ) ) |
| 57 |
48 56
|
mtbird |
|- ( n e. ( 0 ..^ N ) -> -. N = ( ( G ` n ) ` N ) ) |
| 58 |
39 43 57
|
rspcedvd |
|- ( n e. ( 0 ..^ N ) -> E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) |
| 59 |
|
rexnal |
|- ( E. x e. NN0 -. ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) <-> -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) |
| 60 |
58 59
|
sylib |
|- ( n e. ( 0 ..^ N ) -> -. A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) |
| 61 |
|
vex |
|- n e. _V |
| 62 |
|
eqid |
|- ( x e. NN0 |-> n ) = ( x e. NN0 |-> n ) |
| 63 |
61 62
|
fnmpti |
|- ( x e. NN0 |-> n ) Fn NN0 |
| 64 |
52
|
fneq1d |
|- ( n e. ( 0 ..^ N ) -> ( ( G ` n ) Fn NN0 <-> ( x e. NN0 |-> n ) Fn NN0 ) ) |
| 65 |
63 64
|
mpbiri |
|- ( n e. ( 0 ..^ N ) -> ( G ` n ) Fn NN0 ) |
| 66 |
|
eqfnfv |
|- ( ( ( _I |` NN0 ) Fn NN0 /\ ( G ` n ) Fn NN0 ) -> ( ( _I |` NN0 ) = ( G ` n ) <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) ) |
| 67 |
33 65 66
|
sylancr |
|- ( n e. ( 0 ..^ N ) -> ( ( _I |` NN0 ) = ( G ` n ) <-> A. x e. NN0 ( ( _I |` NN0 ) ` x ) = ( ( G ` n ) ` x ) ) ) |
| 68 |
60 67
|
mtbird |
|- ( n e. ( 0 ..^ N ) -> -. ( _I |` NN0 ) = ( G ` n ) ) |
| 69 |
68
|
nrex |
|- -. E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) |
| 70 |
38 69
|
pm3.2ni |
|- -. ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) |
| 71 |
1
|
efmndid |
|- ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) |
| 72 |
49 71
|
ax-mp |
|- ( _I |` NN0 ) = ( 0g ` M ) |
| 73 |
72
|
eqcomi |
|- ( 0g ` M ) = ( _I |` NN0 ) |
| 74 |
73 5
|
eleq12i |
|- ( ( 0g ` M ) e. B <-> ( _I |` NN0 ) e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
| 75 |
|
elun |
|- ( ( _I |` NN0 ) e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( ( _I |` NN0 ) e. { I } \/ ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
| 76 |
|
resiexg |
|- ( NN0 e. _V -> ( _I |` NN0 ) e. _V ) |
| 77 |
49 76
|
ax-mp |
|- ( _I |` NN0 ) e. _V |
| 78 |
77
|
elsn |
|- ( ( _I |` NN0 ) e. { I } <-> ( _I |` NN0 ) = I ) |
| 79 |
|
eliun |
|- ( ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) ( _I |` NN0 ) e. { ( G ` n ) } ) |
| 80 |
77
|
elsn |
|- ( ( _I |` NN0 ) e. { ( G ` n ) } <-> ( _I |` NN0 ) = ( G ` n ) ) |
| 81 |
80
|
rexbii |
|- ( E. n e. ( 0 ..^ N ) ( _I |` NN0 ) e. { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) |
| 82 |
79 81
|
bitri |
|- ( ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } <-> E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) |
| 83 |
78 82
|
orbi12i |
|- ( ( ( _I |` NN0 ) e. { I } \/ ( _I |` NN0 ) e. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) ) |
| 84 |
75 83
|
bitri |
|- ( ( _I |` NN0 ) e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) <-> ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) ) |
| 85 |
74 84
|
bitri |
|- ( ( 0g ` M ) e. B <-> ( ( _I |` NN0 ) = I \/ E. n e. ( 0 ..^ N ) ( _I |` NN0 ) = ( G ` n ) ) ) |
| 86 |
70 85
|
mtbir |
|- -. ( 0g ` M ) e. B |
| 87 |
86
|
nelir |
|- ( 0g ` M ) e/ B |