Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
|- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
2 |
|
simpl1l |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> U e. ( UnifOn ` X ) ) |
3 |
2
|
3anassrs |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> U e. ( UnifOn ` X ) ) |
4 |
|
simplr |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> w e. U ) |
5 |
|
ustssxp |
|- ( ( U e. ( UnifOn ` X ) /\ w e. U ) -> w C_ ( X X. X ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> w C_ ( X X. X ) ) |
7 |
|
simpl1r |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> p e. X ) |
8 |
7
|
3anassrs |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> p e. X ) |
9 |
8
|
snssd |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> { p } C_ X ) |
10 |
|
simpl3 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> b C_ X ) |
11 |
10
|
3anassrs |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> b C_ X ) |
12 |
|
xpss12 |
|- ( ( { p } C_ X /\ b C_ X ) -> ( { p } X. b ) C_ ( X X. X ) ) |
13 |
9 11 12
|
syl2anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( { p } X. b ) C_ ( X X. X ) ) |
14 |
6 13
|
unssd |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( w u. ( { p } X. b ) ) C_ ( X X. X ) ) |
15 |
|
ssun1 |
|- w C_ ( w u. ( { p } X. b ) ) |
16 |
15
|
a1i |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> w C_ ( w u. ( { p } X. b ) ) ) |
17 |
|
ustssel |
|- ( ( U e. ( UnifOn ` X ) /\ w e. U /\ ( w u. ( { p } X. b ) ) C_ ( X X. X ) ) -> ( w C_ ( w u. ( { p } X. b ) ) -> ( w u. ( { p } X. b ) ) e. U ) ) |
18 |
17
|
imp |
|- ( ( ( U e. ( UnifOn ` X ) /\ w e. U /\ ( w u. ( { p } X. b ) ) C_ ( X X. X ) ) /\ w C_ ( w u. ( { p } X. b ) ) ) -> ( w u. ( { p } X. b ) ) e. U ) |
19 |
3 4 14 16 18
|
syl31anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( w u. ( { p } X. b ) ) e. U ) |
20 |
|
simpl2 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ ( a e. ( N ` p ) /\ w e. U /\ a = ( w " { p } ) ) ) -> a C_ b ) |
21 |
20
|
3anassrs |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> a C_ b ) |
22 |
|
ssequn1 |
|- ( a C_ b <-> ( a u. b ) = b ) |
23 |
22
|
biimpi |
|- ( a C_ b -> ( a u. b ) = b ) |
24 |
|
id |
|- ( a = ( w " { p } ) -> a = ( w " { p } ) ) |
25 |
|
inidm |
|- ( { p } i^i { p } ) = { p } |
26 |
|
vex |
|- p e. _V |
27 |
26
|
snnz |
|- { p } =/= (/) |
28 |
25 27
|
eqnetri |
|- ( { p } i^i { p } ) =/= (/) |
29 |
|
xpima2 |
|- ( ( { p } i^i { p } ) =/= (/) -> ( ( { p } X. b ) " { p } ) = b ) |
30 |
28 29
|
mp1i |
|- ( a = ( w " { p } ) -> ( ( { p } X. b ) " { p } ) = b ) |
31 |
30
|
eqcomd |
|- ( a = ( w " { p } ) -> b = ( ( { p } X. b ) " { p } ) ) |
32 |
24 31
|
uneq12d |
|- ( a = ( w " { p } ) -> ( a u. b ) = ( ( w " { p } ) u. ( ( { p } X. b ) " { p } ) ) ) |
33 |
|
imaundir |
|- ( ( w u. ( { p } X. b ) ) " { p } ) = ( ( w " { p } ) u. ( ( { p } X. b ) " { p } ) ) |
34 |
32 33
|
eqtr4di |
|- ( a = ( w " { p } ) -> ( a u. b ) = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
35 |
23 34
|
sylan9req |
|- ( ( a C_ b /\ a = ( w " { p } ) ) -> b = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
36 |
21 35
|
sylancom |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> b = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
37 |
|
imaeq1 |
|- ( u = ( w u. ( { p } X. b ) ) -> ( u " { p } ) = ( ( w u. ( { p } X. b ) ) " { p } ) ) |
38 |
37
|
rspceeqv |
|- ( ( ( w u. ( { p } X. b ) ) e. U /\ b = ( ( w u. ( { p } X. b ) ) " { p } ) ) -> E. u e. U b = ( u " { p } ) ) |
39 |
19 36 38
|
syl2anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> E. u e. U b = ( u " { p } ) ) |
40 |
1
|
ustuqtoplem |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. _V ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
41 |
40
|
elvd |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
42 |
41
|
biimpa |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
43 |
42
|
3ad2antl1 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
44 |
39 43
|
r19.29a |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> E. u e. U b = ( u " { p } ) ) |
45 |
1
|
ustuqtoplem |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b e. _V ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
46 |
45
|
elvd |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
47 |
46
|
3ad2ant1 |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
48 |
47
|
adantr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
49 |
44 48
|
mpbird |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a C_ b /\ b C_ X ) /\ a e. ( N ` p ) ) -> b e. ( N ` p ) ) |