| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkohmeo.x |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 2 |
|
xkohmeo.y |
|- ( ph -> K e. ( TopOn ` Y ) ) |
| 3 |
|
xkohmeo.f |
|- F = ( f e. ( ( J tX K ) Cn L ) |-> ( x e. X |-> ( y e. Y |-> ( x f y ) ) ) ) |
| 4 |
|
xkohmeo.j |
|- ( ph -> J e. N-Locally Comp ) |
| 5 |
|
xkohmeo.k |
|- ( ph -> K e. N-Locally Comp ) |
| 6 |
|
xkohmeo.l |
|- ( ph -> L e. Top ) |
| 7 |
|
txtopon |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 9 |
|
topontop |
|- ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) -> ( J tX K ) e. Top ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( J tX K ) e. Top ) |
| 11 |
|
eqid |
|- ( L ^ko ( J tX K ) ) = ( L ^ko ( J tX K ) ) |
| 12 |
11
|
xkotopon |
|- ( ( ( J tX K ) e. Top /\ L e. Top ) -> ( L ^ko ( J tX K ) ) e. ( TopOn ` ( ( J tX K ) Cn L ) ) ) |
| 13 |
10 6 12
|
syl2anc |
|- ( ph -> ( L ^ko ( J tX K ) ) e. ( TopOn ` ( ( J tX K ) Cn L ) ) ) |
| 14 |
|
vex |
|- f e. _V |
| 15 |
|
vex |
|- x e. _V |
| 16 |
14 15
|
op1std |
|- ( z = <. f , x >. -> ( 1st ` z ) = f ) |
| 17 |
14 15
|
op2ndd |
|- ( z = <. f , x >. -> ( 2nd ` z ) = x ) |
| 18 |
|
eqidd |
|- ( z = <. f , x >. -> y = y ) |
| 19 |
16 17 18
|
oveq123d |
|- ( z = <. f , x >. -> ( ( 2nd ` z ) ( 1st ` z ) y ) = ( x f y ) ) |
| 20 |
19
|
mpteq2dv |
|- ( z = <. f , x >. -> ( y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) = ( y e. Y |-> ( x f y ) ) ) |
| 21 |
20
|
mpompt |
|- ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) ) = ( f e. ( ( J tX K ) Cn L ) , x e. X |-> ( y e. Y |-> ( x f y ) ) ) |
| 22 |
|
txtopon |
|- ( ( ( L ^ko ( J tX K ) ) e. ( TopOn ` ( ( J tX K ) Cn L ) ) /\ J e. ( TopOn ` X ) ) -> ( ( L ^ko ( J tX K ) ) tX J ) e. ( TopOn ` ( ( ( J tX K ) Cn L ) X. X ) ) ) |
| 23 |
13 1 22
|
syl2anc |
|- ( ph -> ( ( L ^ko ( J tX K ) ) tX J ) e. ( TopOn ` ( ( ( J tX K ) Cn L ) X. X ) ) ) |
| 24 |
|
vex |
|- z e. _V |
| 25 |
|
vex |
|- y e. _V |
| 26 |
24 25
|
op1std |
|- ( w = <. z , y >. -> ( 1st ` w ) = z ) |
| 27 |
26
|
fveq2d |
|- ( w = <. z , y >. -> ( 1st ` ( 1st ` w ) ) = ( 1st ` z ) ) |
| 28 |
26
|
fveq2d |
|- ( w = <. z , y >. -> ( 2nd ` ( 1st ` w ) ) = ( 2nd ` z ) ) |
| 29 |
24 25
|
op2ndd |
|- ( w = <. z , y >. -> ( 2nd ` w ) = y ) |
| 30 |
27 28 29
|
oveq123d |
|- ( w = <. z , y >. -> ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) = ( ( 2nd ` z ) ( 1st ` z ) y ) ) |
| 31 |
30
|
mpompt |
|- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) |
| 32 |
|
txtopon |
|- ( ( ( ( L ^ko ( J tX K ) ) tX J ) e. ( TopOn ` ( ( ( J tX K ) Cn L ) X. X ) ) /\ K e. ( TopOn ` Y ) ) -> ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) e. ( TopOn ` ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) ) |
| 33 |
23 2 32
|
syl2anc |
|- ( ph -> ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) e. ( TopOn ` ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) ) |
| 34 |
|
toptopon2 |
|- ( L e. Top <-> L e. ( TopOn ` U. L ) ) |
| 35 |
6 34
|
sylib |
|- ( ph -> L e. ( TopOn ` U. L ) ) |
| 36 |
|
txcmp |
|- ( ( x e. Comp /\ y e. Comp ) -> ( x tX y ) e. Comp ) |
| 37 |
36
|
txnlly |
|- ( ( J e. N-Locally Comp /\ K e. N-Locally Comp ) -> ( J tX K ) e. N-Locally Comp ) |
| 38 |
4 5 37
|
syl2anc |
|- ( ph -> ( J tX K ) e. N-Locally Comp ) |
| 39 |
27
|
mpompt |
|- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 1st ` ( 1st ` w ) ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 1st ` z ) ) |
| 40 |
8
|
adantr |
|- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 41 |
35
|
adantr |
|- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> L e. ( TopOn ` U. L ) ) |
| 42 |
|
xp1st |
|- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) -> ( 1st ` w ) e. ( ( ( J tX K ) Cn L ) X. X ) ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` w ) e. ( ( ( J tX K ) Cn L ) X. X ) ) |
| 44 |
|
xp1st |
|- ( ( 1st ` w ) e. ( ( ( J tX K ) Cn L ) X. X ) -> ( 1st ` ( 1st ` w ) ) e. ( ( J tX K ) Cn L ) ) |
| 45 |
43 44
|
syl |
|- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` ( 1st ` w ) ) e. ( ( J tX K ) Cn L ) ) |
| 46 |
|
cnf2 |
|- ( ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) /\ L e. ( TopOn ` U. L ) /\ ( 1st ` ( 1st ` w ) ) e. ( ( J tX K ) Cn L ) ) -> ( 1st ` ( 1st ` w ) ) : ( X X. Y ) --> U. L ) |
| 47 |
40 41 45 46
|
syl3anc |
|- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` ( 1st ` w ) ) : ( X X. Y ) --> U. L ) |
| 48 |
47
|
feqmptd |
|- ( ( ph /\ w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) ) -> ( 1st ` ( 1st ` w ) ) = ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) |
| 49 |
48
|
mpteq2dva |
|- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 1st ` ( 1st ` w ) ) ) = ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) ) |
| 50 |
39 49
|
eqtr3id |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 1st ` z ) ) = ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) ) |
| 51 |
23 2
|
cnmpt1st |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> z ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( ( L ^ko ( J tX K ) ) tX J ) ) ) |
| 52 |
|
fveq2 |
|- ( t = z -> ( 1st ` t ) = ( 1st ` z ) ) |
| 53 |
52
|
cbvmptv |
|- ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` t ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` z ) ) |
| 54 |
16
|
mpompt |
|- ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` z ) ) = ( f e. ( ( J tX K ) Cn L ) , x e. X |-> f ) |
| 55 |
13 1
|
cnmpt1st |
|- ( ph -> ( f e. ( ( J tX K ) Cn L ) , x e. X |-> f ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 56 |
54 55
|
eqeltrid |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` z ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 57 |
53 56
|
eqeltrid |
|- ( ph -> ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 1st ` t ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 58 |
23 2 51 23 57 52
|
cnmpt21 |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 1st ` z ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 59 |
50 58
|
eqeltrrd |
|- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( u e. ( X X. Y ) |-> ( ( 1st ` ( 1st ` w ) ) ` u ) ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 60 |
28
|
mpompt |
|- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` ( 1st ` w ) ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 2nd ` z ) ) |
| 61 |
|
fveq2 |
|- ( t = z -> ( 2nd ` t ) = ( 2nd ` z ) ) |
| 62 |
61
|
cbvmptv |
|- ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` t ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` z ) ) |
| 63 |
17
|
mpompt |
|- ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` z ) ) = ( f e. ( ( J tX K ) Cn L ) , x e. X |-> x ) |
| 64 |
13 1
|
cnmpt2nd |
|- ( ph -> ( f e. ( ( J tX K ) Cn L ) , x e. X |-> x ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn J ) ) |
| 65 |
63 64
|
eqeltrid |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` z ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn J ) ) |
| 66 |
62 65
|
eqeltrid |
|- ( ph -> ( t e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( 2nd ` t ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn J ) ) |
| 67 |
23 2 51 23 66 61
|
cnmpt21 |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( 2nd ` z ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn J ) ) |
| 68 |
60 67
|
eqeltrid |
|- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` ( 1st ` w ) ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn J ) ) |
| 69 |
29
|
mpompt |
|- ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` w ) ) = ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> y ) |
| 70 |
23 2
|
cnmpt2nd |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> y ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn K ) ) |
| 71 |
69 70
|
eqeltrid |
|- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( 2nd ` w ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn K ) ) |
| 72 |
33 68 71
|
cnmpt1t |
|- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn ( J tX K ) ) ) |
| 73 |
|
fveq2 |
|- ( u = <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. -> ( ( 1st ` ( 1st ` w ) ) ` u ) = ( ( 1st ` ( 1st ` w ) ) ` <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. ) ) |
| 74 |
|
df-ov |
|- ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) = ( ( 1st ` ( 1st ` w ) ) ` <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. ) |
| 75 |
73 74
|
eqtr4di |
|- ( u = <. ( 2nd ` ( 1st ` w ) ) , ( 2nd ` w ) >. -> ( ( 1st ` ( 1st ` w ) ) ` u ) = ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) ) |
| 76 |
33 8 35 38 59 72 75
|
cnmptk1p |
|- ( ph -> ( w e. ( ( ( ( J tX K ) Cn L ) X. X ) X. Y ) |-> ( ( 2nd ` ( 1st ` w ) ) ( 1st ` ( 1st ` w ) ) ( 2nd ` w ) ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn L ) ) |
| 77 |
31 76
|
eqeltrrid |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) , y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) e. ( ( ( ( L ^ko ( J tX K ) ) tX J ) tX K ) Cn L ) ) |
| 78 |
23 2 77
|
cnmpt2k |
|- ( ph -> ( z e. ( ( ( J tX K ) Cn L ) X. X ) |-> ( y e. Y |-> ( ( 2nd ` z ) ( 1st ` z ) y ) ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko K ) ) ) |
| 79 |
21 78
|
eqeltrrid |
|- ( ph -> ( f e. ( ( J tX K ) Cn L ) , x e. X |-> ( y e. Y |-> ( x f y ) ) ) e. ( ( ( L ^ko ( J tX K ) ) tX J ) Cn ( L ^ko K ) ) ) |
| 80 |
13 1 79
|
cnmpt2k |
|- ( ph -> ( f e. ( ( J tX K ) Cn L ) |-> ( x e. X |-> ( y e. Y |-> ( x f y ) ) ) ) e. ( ( L ^ko ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 81 |
3 80
|
eqeltrid |
|- ( ph -> F e. ( ( L ^ko ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 82 |
1 2 3 4 5 6
|
xkocnv |
|- ( ph -> `' F = ( g e. ( J Cn ( L ^ko K ) ) |-> ( x e. X , y e. Y |-> ( ( g ` x ) ` y ) ) ) ) |
| 83 |
15 25
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 84 |
83
|
fveq2d |
|- ( z = <. x , y >. -> ( g ` ( 1st ` z ) ) = ( g ` x ) ) |
| 85 |
15 25
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 86 |
84 85
|
fveq12d |
|- ( z = <. x , y >. -> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) = ( ( g ` x ) ` y ) ) |
| 87 |
86
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) = ( x e. X , y e. Y |-> ( ( g ` x ) ` y ) ) |
| 88 |
87
|
mpteq2i |
|- ( g e. ( J Cn ( L ^ko K ) ) |-> ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) |-> ( x e. X , y e. Y |-> ( ( g ` x ) ` y ) ) ) |
| 89 |
82 88
|
eqtr4di |
|- ( ph -> `' F = ( g e. ( J Cn ( L ^ko K ) ) |-> ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) ) |
| 90 |
|
nllytop |
|- ( J e. N-Locally Comp -> J e. Top ) |
| 91 |
4 90
|
syl |
|- ( ph -> J e. Top ) |
| 92 |
|
nllytop |
|- ( K e. N-Locally Comp -> K e. Top ) |
| 93 |
5 92
|
syl |
|- ( ph -> K e. Top ) |
| 94 |
|
xkotop |
|- ( ( K e. Top /\ L e. Top ) -> ( L ^ko K ) e. Top ) |
| 95 |
93 6 94
|
syl2anc |
|- ( ph -> ( L ^ko K ) e. Top ) |
| 96 |
|
eqid |
|- ( ( L ^ko K ) ^ko J ) = ( ( L ^ko K ) ^ko J ) |
| 97 |
96
|
xkotopon |
|- ( ( J e. Top /\ ( L ^ko K ) e. Top ) -> ( ( L ^ko K ) ^ko J ) e. ( TopOn ` ( J Cn ( L ^ko K ) ) ) ) |
| 98 |
91 95 97
|
syl2anc |
|- ( ph -> ( ( L ^ko K ) ^ko J ) e. ( TopOn ` ( J Cn ( L ^ko K ) ) ) ) |
| 99 |
|
vex |
|- g e. _V |
| 100 |
99 24
|
op1std |
|- ( w = <. g , z >. -> ( 1st ` w ) = g ) |
| 101 |
99 24
|
op2ndd |
|- ( w = <. g , z >. -> ( 2nd ` w ) = z ) |
| 102 |
101
|
fveq2d |
|- ( w = <. g , z >. -> ( 1st ` ( 2nd ` w ) ) = ( 1st ` z ) ) |
| 103 |
100 102
|
fveq12d |
|- ( w = <. g , z >. -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) = ( g ` ( 1st ` z ) ) ) |
| 104 |
101
|
fveq2d |
|- ( w = <. g , z >. -> ( 2nd ` ( 2nd ` w ) ) = ( 2nd ` z ) ) |
| 105 |
103 104
|
fveq12d |
|- ( w = <. g , z >. -> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) = ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
| 106 |
105
|
mpompt |
|- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) |
| 107 |
|
txtopon |
|- ( ( ( ( L ^ko K ) ^ko J ) e. ( TopOn ` ( J Cn ( L ^ko K ) ) ) /\ ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) -> ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) e. ( TopOn ` ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) ) |
| 108 |
98 8 107
|
syl2anc |
|- ( ph -> ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) e. ( TopOn ` ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) ) |
| 109 |
2
|
adantr |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> K e. ( TopOn ` Y ) ) |
| 110 |
35
|
adantr |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> L e. ( TopOn ` U. L ) ) |
| 111 |
|
eqid |
|- ( L ^ko K ) = ( L ^ko K ) |
| 112 |
111
|
xkotopon |
|- ( ( K e. Top /\ L e. Top ) -> ( L ^ko K ) e. ( TopOn ` ( K Cn L ) ) ) |
| 113 |
93 6 112
|
syl2anc |
|- ( ph -> ( L ^ko K ) e. ( TopOn ` ( K Cn L ) ) ) |
| 114 |
|
xp1st |
|- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) -> ( 1st ` w ) e. ( J Cn ( L ^ko K ) ) ) |
| 115 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ ( L ^ko K ) e. ( TopOn ` ( K Cn L ) ) /\ ( 1st ` w ) e. ( J Cn ( L ^ko K ) ) ) -> ( 1st ` w ) : X --> ( K Cn L ) ) |
| 116 |
1 113 114 115
|
syl2an3an |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 1st ` w ) : X --> ( K Cn L ) ) |
| 117 |
|
xp2nd |
|- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) -> ( 2nd ` w ) e. ( X X. Y ) ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 2nd ` w ) e. ( X X. Y ) ) |
| 119 |
|
xp1st |
|- ( ( 2nd ` w ) e. ( X X. Y ) -> ( 1st ` ( 2nd ` w ) ) e. X ) |
| 120 |
118 119
|
syl |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 1st ` ( 2nd ` w ) ) e. X ) |
| 121 |
116 120
|
ffvelcdmd |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) e. ( K Cn L ) ) |
| 122 |
|
cnf2 |
|- ( ( K e. ( TopOn ` Y ) /\ L e. ( TopOn ` U. L ) /\ ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) e. ( K Cn L ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) : Y --> U. L ) |
| 123 |
109 110 121 122
|
syl3anc |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) : Y --> U. L ) |
| 124 |
123
|
feqmptd |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) = ( y e. Y |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) ) ) |
| 125 |
124
|
mpteq2dva |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ) = ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( y e. Y |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) ) ) ) |
| 126 |
100
|
mpompt |
|- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` w ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> g ) |
| 127 |
116
|
feqmptd |
|- ( ( ph /\ w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) ) -> ( 1st ` w ) = ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) |
| 128 |
127
|
mpteq2dva |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` w ) ) = ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) ) |
| 129 |
126 128
|
eqtr3id |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> g ) = ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) ) |
| 130 |
98 8
|
cnmpt1st |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> g ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 131 |
129 130
|
eqeltrrd |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( x e. X |-> ( ( 1st ` w ) ` x ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) ) |
| 132 |
102
|
mpompt |
|- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` ( 2nd ` w ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 1st ` z ) ) |
| 133 |
98 8
|
cnmpt2nd |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> z ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( J tX K ) ) ) |
| 134 |
52
|
cbvmptv |
|- ( t e. ( X X. Y ) |-> ( 1st ` t ) ) = ( z e. ( X X. Y ) |-> ( 1st ` z ) ) |
| 135 |
83
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( 1st ` z ) ) = ( x e. X , y e. Y |-> x ) |
| 136 |
1 2
|
cnmpt1st |
|- ( ph -> ( x e. X , y e. Y |-> x ) e. ( ( J tX K ) Cn J ) ) |
| 137 |
135 136
|
eqeltrid |
|- ( ph -> ( z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( J tX K ) Cn J ) ) |
| 138 |
134 137
|
eqeltrid |
|- ( ph -> ( t e. ( X X. Y ) |-> ( 1st ` t ) ) e. ( ( J tX K ) Cn J ) ) |
| 139 |
98 8 133 8 138 52
|
cnmpt21 |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 1st ` z ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn J ) ) |
| 140 |
132 139
|
eqeltrid |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 1st ` ( 2nd ` w ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn J ) ) |
| 141 |
|
fveq2 |
|- ( x = ( 1st ` ( 2nd ` w ) ) -> ( ( 1st ` w ) ` x ) = ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ) |
| 142 |
108 1 113 4 131 140 141
|
cnmptk1p |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( L ^ko K ) ) ) |
| 143 |
125 142
|
eqeltrrd |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( y e. Y |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn ( L ^ko K ) ) ) |
| 144 |
104
|
mpompt |
|- ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 2nd ` ( 2nd ` w ) ) ) = ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 2nd ` z ) ) |
| 145 |
61
|
cbvmptv |
|- ( t e. ( X X. Y ) |-> ( 2nd ` t ) ) = ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) |
| 146 |
85
|
mpompt |
|- ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) = ( x e. X , y e. Y |-> y ) |
| 147 |
1 2
|
cnmpt2nd |
|- ( ph -> ( x e. X , y e. Y |-> y ) e. ( ( J tX K ) Cn K ) ) |
| 148 |
146 147
|
eqeltrid |
|- ( ph -> ( z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( J tX K ) Cn K ) ) |
| 149 |
145 148
|
eqeltrid |
|- ( ph -> ( t e. ( X X. Y ) |-> ( 2nd ` t ) ) e. ( ( J tX K ) Cn K ) ) |
| 150 |
98 8 133 8 149 61
|
cnmpt21 |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( 2nd ` z ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn K ) ) |
| 151 |
144 150
|
eqeltrid |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( 2nd ` ( 2nd ` w ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn K ) ) |
| 152 |
|
fveq2 |
|- ( y = ( 2nd ` ( 2nd ` w ) ) -> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` y ) = ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) ) |
| 153 |
108 2 35 5 143 151 152
|
cnmptk1p |
|- ( ph -> ( w e. ( ( J Cn ( L ^ko K ) ) X. ( X X. Y ) ) |-> ( ( ( 1st ` w ) ` ( 1st ` ( 2nd ` w ) ) ) ` ( 2nd ` ( 2nd ` w ) ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn L ) ) |
| 154 |
106 153
|
eqeltrrid |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) , z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) e. ( ( ( ( L ^ko K ) ^ko J ) tX ( J tX K ) ) Cn L ) ) |
| 155 |
98 8 154
|
cnmpt2k |
|- ( ph -> ( g e. ( J Cn ( L ^ko K ) ) |-> ( z e. ( X X. Y ) |-> ( ( g ` ( 1st ` z ) ) ` ( 2nd ` z ) ) ) ) e. ( ( ( L ^ko K ) ^ko J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 156 |
89 155
|
eqeltrd |
|- ( ph -> `' F e. ( ( ( L ^ko K ) ^ko J ) Cn ( L ^ko ( J tX K ) ) ) ) |
| 157 |
|
ishmeo |
|- ( F e. ( ( L ^ko ( J tX K ) ) Homeo ( ( L ^ko K ) ^ko J ) ) <-> ( F e. ( ( L ^ko ( J tX K ) ) Cn ( ( L ^ko K ) ^ko J ) ) /\ `' F e. ( ( ( L ^ko K ) ^ko J ) Cn ( L ^ko ( J tX K ) ) ) ) ) |
| 158 |
81 156 157
|
sylanbrc |
|- ( ph -> F e. ( ( L ^ko ( J tX K ) ) Homeo ( ( L ^ko K ) ^ko J ) ) ) |