Metamath Proof Explorer


Theorem 0idl

Description: The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses 0idl.1 G = 1 st R
0idl.2 Z = GId G
Assertion 0idl R RingOps Z Idl R

Proof

Step Hyp Ref Expression
1 0idl.1 G = 1 st R
2 0idl.2 Z = GId G
3 eqid ran G = ran G
4 1 3 2 rngo0cl R RingOps Z ran G
5 4 snssd R RingOps Z ran G
6 2 fvexi Z V
7 6 snid Z Z
8 7 a1i R RingOps Z Z
9 velsn x Z x = Z
10 velsn y Z y = Z
11 1 3 2 rngo0rid R RingOps Z ran G Z G Z = Z
12 4 11 mpdan R RingOps Z G Z = Z
13 ovex Z G Z V
14 13 elsn Z G Z Z Z G Z = Z
15 12 14 sylibr R RingOps Z G Z Z
16 oveq2 y = Z Z G y = Z G Z
17 16 eleq1d y = Z Z G y Z Z G Z Z
18 15 17 syl5ibrcom R RingOps y = Z Z G y Z
19 10 18 syl5bi R RingOps y Z Z G y Z
20 19 ralrimiv R RingOps y Z Z G y Z
21 eqid 2 nd R = 2 nd R
22 2 3 1 21 rngorz R RingOps z ran G z 2 nd R Z = Z
23 ovex z 2 nd R Z V
24 23 elsn z 2 nd R Z Z z 2 nd R Z = Z
25 22 24 sylibr R RingOps z ran G z 2 nd R Z Z
26 2 3 1 21 rngolz R RingOps z ran G Z 2 nd R z = Z
27 ovex Z 2 nd R z V
28 27 elsn Z 2 nd R z Z Z 2 nd R z = Z
29 26 28 sylibr R RingOps z ran G Z 2 nd R z Z
30 25 29 jca R RingOps z ran G z 2 nd R Z Z Z 2 nd R z Z
31 30 ralrimiva R RingOps z ran G z 2 nd R Z Z Z 2 nd R z Z
32 20 31 jca R RingOps y Z Z G y Z z ran G z 2 nd R Z Z Z 2 nd R z Z
33 oveq1 x = Z x G y = Z G y
34 33 eleq1d x = Z x G y Z Z G y Z
35 34 ralbidv x = Z y Z x G y Z y Z Z G y Z
36 oveq2 x = Z z 2 nd R x = z 2 nd R Z
37 36 eleq1d x = Z z 2 nd R x Z z 2 nd R Z Z
38 oveq1 x = Z x 2 nd R z = Z 2 nd R z
39 38 eleq1d x = Z x 2 nd R z Z Z 2 nd R z Z
40 37 39 anbi12d x = Z z 2 nd R x Z x 2 nd R z Z z 2 nd R Z Z Z 2 nd R z Z
41 40 ralbidv x = Z z ran G z 2 nd R x Z x 2 nd R z Z z ran G z 2 nd R Z Z Z 2 nd R z Z
42 35 41 anbi12d x = Z y Z x G y Z z ran G z 2 nd R x Z x 2 nd R z Z y Z Z G y Z z ran G z 2 nd R Z Z Z 2 nd R z Z
43 32 42 syl5ibrcom R RingOps x = Z y Z x G y Z z ran G z 2 nd R x Z x 2 nd R z Z
44 9 43 syl5bi R RingOps x Z y Z x G y Z z ran G z 2 nd R x Z x 2 nd R z Z
45 44 ralrimiv R RingOps x Z y Z x G y Z z ran G z 2 nd R x Z x 2 nd R z Z
46 1 21 3 2 isidl R RingOps Z Idl R Z ran G Z Z x Z y Z x G y Z z ran G z 2 nd R x Z x 2 nd R z Z
47 5 8 45 46 mpbir3and R RingOps Z Idl R