| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0idl.1 |  | 
						
							| 2 |  | 0idl.2 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 1 3 2 | rngo0cl |  | 
						
							| 5 | 4 | snssd |  | 
						
							| 6 | 2 | fvexi |  | 
						
							| 7 | 6 | snid |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 |  | velsn |  | 
						
							| 10 |  | velsn |  | 
						
							| 11 | 1 3 2 | rngo0rid |  | 
						
							| 12 | 4 11 | mpdan |  | 
						
							| 13 |  | ovex |  | 
						
							| 14 | 13 | elsn |  | 
						
							| 15 | 12 14 | sylibr |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 | 16 | eleq1d |  | 
						
							| 18 | 15 17 | syl5ibrcom |  | 
						
							| 19 | 10 18 | biimtrid |  | 
						
							| 20 | 19 | ralrimiv |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 2 3 1 21 | rngorz |  | 
						
							| 23 |  | ovex |  | 
						
							| 24 | 23 | elsn |  | 
						
							| 25 | 22 24 | sylibr |  | 
						
							| 26 | 2 3 1 21 | rngolz |  | 
						
							| 27 |  | ovex |  | 
						
							| 28 | 27 | elsn |  | 
						
							| 29 | 26 28 | sylibr |  | 
						
							| 30 | 25 29 | jca |  | 
						
							| 31 | 30 | ralrimiva |  | 
						
							| 32 | 20 31 | jca |  | 
						
							| 33 |  | oveq1 |  | 
						
							| 34 | 33 | eleq1d |  | 
						
							| 35 | 34 | ralbidv |  | 
						
							| 36 |  | oveq2 |  | 
						
							| 37 | 36 | eleq1d |  | 
						
							| 38 |  | oveq1 |  | 
						
							| 39 | 38 | eleq1d |  | 
						
							| 40 | 37 39 | anbi12d |  | 
						
							| 41 | 40 | ralbidv |  | 
						
							| 42 | 35 41 | anbi12d |  | 
						
							| 43 | 32 42 | syl5ibrcom |  | 
						
							| 44 | 9 43 | biimtrid |  | 
						
							| 45 | 44 | ralrimiv |  | 
						
							| 46 | 1 21 3 2 | isidl |  | 
						
							| 47 | 5 8 45 46 | mpbir3and |  |