Metamath Proof Explorer


Theorem 0ringnnzr

Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019)

Ref Expression
Assertion 0ringnnzr R Ring Base R = 1 ¬ R NzRing

Proof

Step Hyp Ref Expression
1 1re 1
2 1 ltnri ¬ 1 < 1
3 breq2 Base R = 1 1 < Base R 1 < 1
4 2 3 mtbiri Base R = 1 ¬ 1 < Base R
5 4 adantl R Ring Base R = 1 ¬ 1 < Base R
6 5 intnand R Ring Base R = 1 ¬ R Ring 1 < Base R
7 6 ex R Ring Base R = 1 ¬ R Ring 1 < Base R
8 ianor ¬ R Ring 1 < Base R ¬ R Ring ¬ 1 < Base R
9 pm2.21 ¬ R Ring R Ring Base R = 1
10 fvex Base R V
11 hashxrcl Base R V Base R *
12 10 11 ax-mp Base R *
13 1xr 1 *
14 xrlenlt Base R * 1 * Base R 1 ¬ 1 < Base R
15 12 13 14 mp2an Base R 1 ¬ 1 < Base R
16 15 bicomi ¬ 1 < Base R Base R 1
17 simpr Base R Base R 1 Base R 1
18 1nn0 1 0
19 hashbnd Base R V 1 0 Base R 1 Base R Fin
20 10 18 17 19 mp3an12i Base R Base R 1 Base R Fin
21 hashcl Base R Fin Base R 0
22 simpr Base R Base R 0 Base R 0
23 hasheq0 Base R V Base R = 0 Base R =
24 10 23 mp1i Base R 0 Base R = 0 Base R =
25 24 biimpd Base R 0 Base R = 0 Base R =
26 25 necon3d Base R 0 Base R Base R 0
27 26 impcom Base R Base R 0 Base R 0
28 elnnne0 Base R Base R 0 Base R 0
29 22 27 28 sylanbrc Base R Base R 0 Base R
30 29 ex Base R Base R 0 Base R
31 30 adantr Base R Base R 1 Base R 0 Base R
32 21 31 syl5com Base R Fin Base R Base R 1 Base R
33 20 32 mpcom Base R Base R 1 Base R
34 nnle1eq1 Base R Base R 1 Base R = 1
35 33 34 syl Base R Base R 1 Base R 1 Base R = 1
36 17 35 mpbid Base R Base R 1 Base R = 1
37 36 ex Base R Base R 1 Base R = 1
38 ringgrp R Ring R Grp
39 eqid Base R = Base R
40 39 grpbn0 R Grp Base R
41 38 40 syl R Ring Base R
42 37 41 syl11 Base R 1 R Ring Base R = 1
43 16 42 sylbi ¬ 1 < Base R R Ring Base R = 1
44 9 43 jaoi ¬ R Ring ¬ 1 < Base R R Ring Base R = 1
45 8 44 sylbi ¬ R Ring 1 < Base R R Ring Base R = 1
46 45 com12 R Ring ¬ R Ring 1 < Base R Base R = 1
47 7 46 impbid R Ring Base R = 1 ¬ R Ring 1 < Base R
48 39 isnzr2hash R NzRing R Ring 1 < Base R
49 48 bicomi R Ring 1 < Base R R NzRing
50 49 notbii ¬ R Ring 1 < Base R ¬ R NzRing
51 47 50 bitrdi R Ring Base R = 1 ¬ R NzRing