Metamath Proof Explorer


Theorem 1arithufd

Description: Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element X of a UFD R can be written as a product of primes f . As shown in 1arithidom , that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b B = Base R
1arithufd.0 0 ˙ = 0 R
1arithufd.u U = Unit R
1arithufd.p P = RPrime R
1arithufd.m M = mulGrp R
1arithufd.r φ R UFD
1arithufd.x φ X B
1arithufd.2 φ ¬ X U
1arithufd.3 φ X 0 ˙
Assertion 1arithufd φ f Word P X = M f

Proof

Step Hyp Ref Expression
1 1arithufd.b B = Base R
2 1arithufd.0 0 ˙ = 0 R
3 1arithufd.u U = Unit R
4 1arithufd.p P = RPrime R
5 1arithufd.m M = mulGrp R
6 1arithufd.r φ R UFD
7 1arithufd.x φ X B
8 1arithufd.2 φ ¬ X U
9 1arithufd.3 φ X 0 ˙
10 simpr φ R DivRing R DivRing
11 7 adantr φ R DivRing X B
12 9 adantr φ R DivRing X 0 ˙
13 1 3 2 drngunit R DivRing X U X B X 0 ˙
14 13 biimpar R DivRing X B X 0 ˙ X U
15 10 11 12 14 syl12anc φ R DivRing X U
16 8 adantr φ R DivRing ¬ X U
17 15 16 pm2.21dd φ R DivRing f Word P X = M f
18 6 adantr φ ¬ R DivRing R UFD
19 simpr φ ¬ R DivRing ¬ R DivRing
20 eqeq1 y = x y = M f x = M f
21 20 rexbidv y = x f Word P y = M f f Word P x = M f
22 21 cbvrabv y B | f Word P y = M f = x B | f Word P x = M f
23 oveq2 f = g M f = M g
24 23 eqeq2d f = g x = M f x = M g
25 24 cbvrexvw f Word P x = M f g Word P x = M g
26 22 25 rabbieq y B | f Word P y = M f = x B | g Word P x = M g
27 7 adantr φ ¬ R DivRing X B
28 8 adantr φ ¬ R DivRing ¬ X U
29 9 adantr φ ¬ R DivRing X 0 ˙
30 1 2 3 4 5 18 19 26 27 28 29 1arithufdlem4 φ ¬ R DivRing X y B | f Word P y = M f
31 eqeq1 y = X y = M f X = M f
32 31 rexbidv y = X f Word P y = M f f Word P X = M f
33 32 elrab X y B | f Word P y = M f X B f Word P X = M f
34 30 33 sylib φ ¬ R DivRing X B f Word P X = M f
35 34 simprd φ ¬ R DivRing f Word P X = M f
36 17 35 pm2.61dan φ f Word P X = M f