Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
|
2 |
|
1arithufd.0 |
|
3 |
|
1arithufd.u |
|
4 |
|
1arithufd.p |
|
5 |
|
1arithufd.m |
|
6 |
|
1arithufd.r |
|
7 |
|
1arithufd.x |
|
8 |
|
1arithufd.2 |
|
9 |
|
1arithufd.3 |
|
10 |
|
simpr |
|
11 |
7
|
adantr |
|
12 |
9
|
adantr |
|
13 |
1 3 2
|
drngunit |
|
14 |
13
|
biimpar |
|
15 |
10 11 12 14
|
syl12anc |
|
16 |
8
|
adantr |
|
17 |
15 16
|
pm2.21dd |
|
18 |
6
|
adantr |
|
19 |
|
simpr |
|
20 |
|
eqeq1 |
|
21 |
20
|
rexbidv |
|
22 |
21
|
cbvrabv |
|
23 |
|
oveq2 |
|
24 |
23
|
eqeq2d |
|
25 |
24
|
cbvrexvw |
|
26 |
22 25
|
rabbieq |
|
27 |
7
|
adantr |
|
28 |
8
|
adantr |
|
29 |
9
|
adantr |
|
30 |
1 2 3 4 5 18 19 26 27 28 29
|
1arithufdlem4 |
|
31 |
|
eqeq1 |
|
32 |
31
|
rexbidv |
|
33 |
32
|
elrab |
|
34 |
30 33
|
sylib |
|
35 |
34
|
simprd |
|
36 |
17 35
|
pm2.61dan |
|