| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arithufd.b |  | 
						
							| 2 |  | 1arithufd.0 |  | 
						
							| 3 |  | 1arithufd.u |  | 
						
							| 4 |  | 1arithufd.p |  | 
						
							| 5 |  | 1arithufd.m |  | 
						
							| 6 |  | 1arithufd.r |  | 
						
							| 7 |  | 1arithufd.x |  | 
						
							| 8 |  | 1arithufd.2 |  | 
						
							| 9 |  | 1arithufd.3 |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 7 | adantr |  | 
						
							| 12 | 9 | adantr |  | 
						
							| 13 | 1 3 2 | drngunit |  | 
						
							| 14 | 13 | biimpar |  | 
						
							| 15 | 10 11 12 14 | syl12anc |  | 
						
							| 16 | 8 | adantr |  | 
						
							| 17 | 15 16 | pm2.21dd |  | 
						
							| 18 | 6 | adantr |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 |  | eqeq1 |  | 
						
							| 21 | 20 | rexbidv |  | 
						
							| 22 | 21 | cbvrabv |  | 
						
							| 23 |  | oveq2 |  | 
						
							| 24 | 23 | eqeq2d |  | 
						
							| 25 | 24 | cbvrexvw |  | 
						
							| 26 | 22 25 | rabbieq |  | 
						
							| 27 | 7 | adantr |  | 
						
							| 28 | 8 | adantr |  | 
						
							| 29 | 9 | adantr |  | 
						
							| 30 | 1 2 3 4 5 18 19 26 27 28 29 | 1arithufdlem4 |  | 
						
							| 31 |  | eqeq1 |  | 
						
							| 32 | 31 | rexbidv |  | 
						
							| 33 | 32 | elrab |  | 
						
							| 34 | 30 33 | sylib |  | 
						
							| 35 | 34 | simprd |  | 
						
							| 36 | 17 35 | pm2.61dan |  |