Metamath Proof Explorer


Theorem 1cvrjat

Description: An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses 1cvrjat.b B=BaseK
1cvrjat.l ˙=K
1cvrjat.j ˙=joinK
1cvrjat.u 1˙=1.K
1cvrjat.c C=K
1cvrjat.a A=AtomsK
Assertion 1cvrjat KHLXBPAXC1˙¬P˙XX˙P=1˙

Proof

Step Hyp Ref Expression
1 1cvrjat.b B=BaseK
2 1cvrjat.l ˙=K
3 1cvrjat.j ˙=joinK
4 1cvrjat.u 1˙=1.K
5 1cvrjat.c C=K
6 1cvrjat.a A=AtomsK
7 simprr KHLXBPAXC1˙¬P˙X¬P˙X
8 1 2 3 5 6 cvr1 KHLXBPA¬P˙XXCX˙P
9 8 adantr KHLXBPAXC1˙¬P˙X¬P˙XXCX˙P
10 7 9 mpbid KHLXBPAXC1˙¬P˙XXCX˙P
11 simpl1 KHLXBPAXC1˙¬P˙XKHL
12 hlop KHLKOP
13 11 12 syl KHLXBPAXC1˙¬P˙XKOP
14 simpl2 KHLXBPAXC1˙¬P˙XXB
15 11 hllatd KHLXBPAXC1˙¬P˙XKLat
16 simpl3 KHLXBPAXC1˙¬P˙XPA
17 1 6 atbase PAPB
18 16 17 syl KHLXBPAXC1˙¬P˙XPB
19 1 3 latjcl KLatXBPBX˙PB
20 15 14 18 19 syl3anc KHLXBPAXC1˙¬P˙XX˙PB
21 eqid ocK=ocK
22 1 21 5 cvrcon3b KOPXBX˙PBXCX˙PocKX˙PCocKX
23 13 14 20 22 syl3anc KHLXBPAXC1˙¬P˙XXCX˙PocKX˙PCocKX
24 10 23 mpbid KHLXBPAXC1˙¬P˙XocKX˙PCocKX
25 hlatl KHLKAtLat
26 11 25 syl KHLXBPAXC1˙¬P˙XKAtLat
27 1 21 opoccl KOPX˙PBocKX˙PB
28 13 20 27 syl2anc KHLXBPAXC1˙¬P˙XocKX˙PB
29 1 21 opoccl KOPXBocKXB
30 13 14 29 syl2anc KHLXBPAXC1˙¬P˙XocKXB
31 eqid 0.K=0.K
32 31 4 21 opoc1 KOPocK1˙=0.K
33 11 12 32 3syl KHLXBPAXC1˙¬P˙XocK1˙=0.K
34 simprl KHLXBPAXC1˙¬P˙XXC1˙
35 1 4 op1cl KOP1˙B
36 11 12 35 3syl KHLXBPAXC1˙¬P˙X1˙B
37 1 21 5 cvrcon3b KOPXB1˙BXC1˙ocK1˙CocKX
38 13 14 36 37 syl3anc KHLXBPAXC1˙¬P˙XXC1˙ocK1˙CocKX
39 34 38 mpbid KHLXBPAXC1˙¬P˙XocK1˙CocKX
40 33 39 eqbrtrrd KHLXBPAXC1˙¬P˙X0.KCocKX
41 1 31 5 6 isat KHLocKXAocKXB0.KCocKX
42 11 41 syl KHLXBPAXC1˙¬P˙XocKXAocKXB0.KCocKX
43 30 40 42 mpbir2and KHLXBPAXC1˙¬P˙XocKXA
44 1 2 31 5 6 atcvreq0 KAtLatocKX˙PBocKXAocKX˙PCocKXocKX˙P=0.K
45 26 28 43 44 syl3anc KHLXBPAXC1˙¬P˙XocKX˙PCocKXocKX˙P=0.K
46 24 45 mpbid KHLXBPAXC1˙¬P˙XocKX˙P=0.K
47 46 fveq2d KHLXBPAXC1˙¬P˙XocKocKX˙P=ocK0.K
48 1 21 opococ KOPX˙PBocKocKX˙P=X˙P
49 13 20 48 syl2anc KHLXBPAXC1˙¬P˙XocKocKX˙P=X˙P
50 31 4 21 opoc0 KOPocK0.K=1˙
51 11 12 50 3syl KHLXBPAXC1˙¬P˙XocK0.K=1˙
52 47 49 51 3eqtr3d KHLXBPAXC1˙¬P˙XX˙P=1˙