Metamath Proof Explorer


Theorem 1elcpmat

Description: The identity of the ring of all polynomial matrices over the ring R is a constant polynomial matrix. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion 1elcpmat NFinRRing1CS

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 eqid BaseR=BaseR
5 eqid 1R=1R
6 4 5 ringidcl RRing1RBaseR
7 6 ancli RRingRRing1RBaseR
8 7 adantl NFinRRingRRing1RBaseR
9 8 ad2antrl i=jNFinRRingiNjNRRing1RBaseR
10 eqid 0R=0R
11 eqid BaseP=BaseP
12 eqid algScP=algScP
13 4 10 2 11 12 cply1coe0 RRing1RBaseRncoe1algScP1Rn=0R
14 9 13 syl i=jNFinRRingiNjNncoe1algScP1Rn=0R
15 iftrue i=jifi=jalgScP1RalgScP0R=algScP1R
16 15 fveq2d i=jcoe1ifi=jalgScP1RalgScP0R=coe1algScP1R
17 16 fveq1d i=jcoe1ifi=jalgScP1RalgScP0Rn=coe1algScP1Rn
18 17 eqeq1d i=jcoe1ifi=jalgScP1RalgScP0Rn=0Rcoe1algScP1Rn=0R
19 18 ralbidv i=jncoe1ifi=jalgScP1RalgScP0Rn=0Rncoe1algScP1Rn=0R
20 19 adantr i=jNFinRRingiNjNncoe1ifi=jalgScP1RalgScP0Rn=0Rncoe1algScP1Rn=0R
21 14 20 mpbird i=jNFinRRingiNjNncoe1ifi=jalgScP1RalgScP0Rn=0R
22 4 10 ring0cl RRing0RBaseR
23 22 ancli RRingRRing0RBaseR
24 23 adantl NFinRRingRRing0RBaseR
25 4 10 2 11 12 cply1coe0 RRing0RBaseRncoe1algScP0Rn=0R
26 24 25 syl NFinRRingncoe1algScP0Rn=0R
27 26 ad2antrl ¬i=jNFinRRingiNjNncoe1algScP0Rn=0R
28 iffalse ¬i=jifi=jalgScP1RalgScP0R=algScP0R
29 28 adantr ¬i=jNFinRRingiNjNifi=jalgScP1RalgScP0R=algScP0R
30 29 fveq2d ¬i=jNFinRRingiNjNcoe1ifi=jalgScP1RalgScP0R=coe1algScP0R
31 30 fveq1d ¬i=jNFinRRingiNjNcoe1ifi=jalgScP1RalgScP0Rn=coe1algScP0Rn
32 31 eqeq1d ¬i=jNFinRRingiNjNcoe1ifi=jalgScP1RalgScP0Rn=0Rcoe1algScP0Rn=0R
33 32 ralbidv ¬i=jNFinRRingiNjNncoe1ifi=jalgScP1RalgScP0Rn=0Rncoe1algScP0Rn=0R
34 27 33 mpbird ¬i=jNFinRRingiNjNncoe1ifi=jalgScP1RalgScP0Rn=0R
35 21 34 pm2.61ian NFinRRingiNjNncoe1ifi=jalgScP1RalgScP0Rn=0R
36 35 ralrimivva NFinRRingiNjNncoe1ifi=jalgScP1RalgScP0Rn=0R
37 simpll NFinRRingiNjNNFin
38 simplr NFinRRingiNjNRRing
39 simprl NFinRRingiNjNiN
40 simprr NFinRRingiNjNjN
41 eqid 1C=1C
42 2 3 12 10 5 37 38 39 40 41 pmat1ovscd NFinRRingiNjNi1Cj=ifi=jalgScP1RalgScP0R
43 42 fveq2d NFinRRingiNjNcoe1i1Cj=coe1ifi=jalgScP1RalgScP0R
44 43 fveq1d NFinRRingiNjNcoe1i1Cjn=coe1ifi=jalgScP1RalgScP0Rn
45 44 eqeq1d NFinRRingiNjNcoe1i1Cjn=0Rcoe1ifi=jalgScP1RalgScP0Rn=0R
46 45 ralbidv NFinRRingiNjNncoe1i1Cjn=0Rncoe1ifi=jalgScP1RalgScP0Rn=0R
47 46 2ralbidva NFinRRingiNjNncoe1i1Cjn=0RiNjNncoe1ifi=jalgScP1RalgScP0Rn=0R
48 36 47 mpbird NFinRRingiNjNncoe1i1Cjn=0R
49 2 3 pmatring NFinRRingCRing
50 eqid BaseC=BaseC
51 50 41 ringidcl CRing1CBaseC
52 49 51 syl NFinRRing1CBaseC
53 1 2 3 50 cpmatel NFinRRing1CBaseC1CSiNjNncoe1i1Cjn=0R
54 52 53 mpd3an3 NFinRRing1CSiNjNncoe1i1Cjn=0R
55 48 54 mpbird NFinRRing1CS