Description: The identity of the ring of all polynomial matrices over the ring R is a constant polynomial matrix. (Contributed by AV, 16-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cpmatsrngpmat.s | |
|
cpmatsrngpmat.p | |
||
cpmatsrngpmat.c | |
||
Assertion | 1elcpmat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmatsrngpmat.s | |
|
2 | cpmatsrngpmat.p | |
|
3 | cpmatsrngpmat.c | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | ringidcl | |
7 | 6 | ancli | |
8 | 7 | adantl | |
9 | 8 | ad2antrl | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 4 10 2 11 12 | cply1coe0 | |
14 | 9 13 | syl | |
15 | iftrue | |
|
16 | 15 | fveq2d | |
17 | 16 | fveq1d | |
18 | 17 | eqeq1d | |
19 | 18 | ralbidv | |
20 | 19 | adantr | |
21 | 14 20 | mpbird | |
22 | 4 10 | ring0cl | |
23 | 22 | ancli | |
24 | 23 | adantl | |
25 | 4 10 2 11 12 | cply1coe0 | |
26 | 24 25 | syl | |
27 | 26 | ad2antrl | |
28 | iffalse | |
|
29 | 28 | adantr | |
30 | 29 | fveq2d | |
31 | 30 | fveq1d | |
32 | 31 | eqeq1d | |
33 | 32 | ralbidv | |
34 | 27 33 | mpbird | |
35 | 21 34 | pm2.61ian | |
36 | 35 | ralrimivva | |
37 | simpll | |
|
38 | simplr | |
|
39 | simprl | |
|
40 | simprr | |
|
41 | eqid | |
|
42 | 2 3 12 10 5 37 38 39 40 41 | pmat1ovscd | |
43 | 42 | fveq2d | |
44 | 43 | fveq1d | |
45 | 44 | eqeq1d | |
46 | 45 | ralbidv | |
47 | 46 | 2ralbidva | |
48 | 36 47 | mpbird | |
49 | 2 3 | pmatring | |
50 | eqid | |
|
51 | 50 41 | ringidcl | |
52 | 49 51 | syl | |
53 | 1 2 3 50 | cpmatel | |
54 | 52 53 | mpd3an3 | |
55 | 48 54 | mpbird | |