Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1loopgruspgr.v | |
|
1loopgruspgr.a | |
||
1loopgruspgr.n | |
||
1loopgruspgr.i | |
||
Assertion | 1loopgrvd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgruspgr.v | |
|
2 | 1loopgruspgr.a | |
|
3 | 1loopgruspgr.n | |
|
4 | 1loopgruspgr.i | |
|
5 | 1 2 3 4 | 1loopgruspgr | |
6 | uspgrushgr | |
|
7 | 5 6 | syl | |
8 | 3 1 | eleqtrrd | |
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 9 10 11 | vtxdushgrfvedg | |
13 | 7 8 12 | syl2anc | |
14 | snex | |
|
15 | sneq | |
|
16 | 15 | eqeq2d | |
17 | eqid | |
|
18 | 14 16 17 | ceqsexv2d | |
19 | 18 | a1i | |
20 | snidg | |
|
21 | 3 20 | syl | |
22 | 21 | iftrued | |
23 | 22 | eqeq1d | |
24 | 23 | exbidv | |
25 | 19 24 | mpbird | |
26 | 1 2 3 4 | 1loopgredg | |
27 | 26 | rabeqdv | |
28 | eleq2 | |
|
29 | 28 | rabsnif | |
30 | 27 29 | eqtrdi | |
31 | 30 | eqeq1d | |
32 | 31 | exbidv | |
33 | 25 32 | mpbird | |
34 | fvex | |
|
35 | 34 | rabex | |
36 | hash1snb | |
|
37 | 35 36 | ax-mp | |
38 | 33 37 | sylibr | |
39 | eqid | |
|
40 | 39 | iftruei | |
41 | 40 | eqeq1i | |
42 | 41 | exbii | |
43 | 19 42 | sylibr | |
44 | 26 | rabeqdv | |
45 | eqeq1 | |
|
46 | 45 | rabsnif | |
47 | 44 46 | eqtrdi | |
48 | 47 | eqeq1d | |
49 | 48 | exbidv | |
50 | 43 49 | mpbird | |
51 | 34 | rabex | |
52 | hash1snb | |
|
53 | 51 52 | ax-mp | |
54 | 50 53 | sylibr | |
55 | 38 54 | oveq12d | |
56 | 1re | |
|
57 | rexadd | |
|
58 | 56 56 57 | mp2an | |
59 | 1p1e2 | |
|
60 | 58 59 | eqtri | |
61 | 60 | a1i | |
62 | 13 55 61 | 3eqtrd | |