Metamath Proof Explorer


Theorem 1sgm2ppw

Description: The sum of the divisors of 2 ^ ( N - 1 ) . (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion 1sgm2ppw N1σ2N1=2N1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 2prm 2
3 nnm1nn0 NN10
4 sgmppw 12N101σ2N1=k=0N121k
5 1 2 3 4 mp3an12i N1σ2N1=k=0N121k
6 2cn 2
7 cxp1 221=2
8 6 7 mp1i k0N121=2
9 8 oveq1d k0N121k=2k
10 9 sumeq2i k=0N121k=k=0N12k
11 6 a1i N2
12 1ne2 12
13 12 necomi 21
14 13 a1i N21
15 nnnn0 NN0
16 11 14 15 geoser Nk=0N12k=12N12
17 10 16 eqtrid Nk=0N121k=12N12
18 2nn 2
19 nnexpcl 2N02N
20 18 15 19 sylancr N2N
21 20 nncnd N2N
22 subcl 2N12N1
23 21 1 22 sylancl N2N1
24 1 a1i N1
25 ax-1ne0 10
26 25 a1i N10
27 23 24 26 div2negd N2N11=2N11
28 negsubdi2 2N12N1=12N
29 21 1 28 sylancl N2N1=12N
30 df-neg 1=01
31 0cn 0
32 pnpcan 1011+0-1+1=01
33 1 31 1 32 mp3an 1+0-1+1=01
34 1p0e1 1+0=1
35 1p1e2 1+1=2
36 34 35 oveq12i 1+0-1+1=12
37 30 33 36 3eqtr2i 1=12
38 37 a1i N1=12
39 29 38 oveq12d N2N11=12N12
40 23 div1d N2N11=2N1
41 27 39 40 3eqtr3d N12N12=2N1
42 5 17 41 3eqtrd N1σ2N1=2N1