Metamath Proof Explorer


Theorem 1st2val

Description: Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Assertion 1st2val xyz|z=xA=1stA

Proof

Step Hyp Ref Expression
1 elvv AV×VwvA=wv
2 fveq2 A=wvxyz|z=xA=xyz|z=xwv
3 df-ov wxyz|z=xv=xyz|z=xwv
4 simpl x=wy=vx=w
5 mpov xV,yVx=xyz|z=x
6 5 eqcomi xyz|z=x=xV,yVx
7 vex wV
8 4 6 7 ovmpoa wVvVwxyz|z=xv=w
9 8 el2v wxyz|z=xv=w
10 3 9 eqtr3i xyz|z=xwv=w
11 2 10 eqtrdi A=wvxyz|z=xA=w
12 vex vV
13 7 12 op1std A=wv1stA=w
14 11 13 eqtr4d A=wvxyz|z=xA=1stA
15 14 exlimivv wvA=wvxyz|z=xA=1stA
16 1 15 sylbi AV×Vxyz|z=xA=1stA
17 vex xV
18 vex yV
19 17 18 pm3.2i xVyV
20 ax6ev zz=x
21 19 20 2th xVyVzz=x
22 21 opabbii xy|xVyV=xy|zz=x
23 df-xp V×V=xy|xVyV
24 dmoprab domxyz|z=x=xy|zz=x
25 22 23 24 3eqtr4ri domxyz|z=x=V×V
26 25 eleq2i Adomxyz|z=xAV×V
27 ndmfv ¬Adomxyz|z=xxyz|z=xA=
28 26 27 sylnbir ¬AV×Vxyz|z=xA=
29 dmsnn0 AV×VdomA
30 29 biimpri domAAV×V
31 30 necon1bi ¬AV×VdomA=
32 31 unieqd ¬AV×VdomA=
33 uni0 =
34 32 33 eqtrdi ¬AV×VdomA=
35 28 34 eqtr4d ¬AV×Vxyz|z=xA=domA
36 1stval 1stA=domA
37 35 36 eqtr4di ¬AV×Vxyz|z=xA=1stA
38 16 37 pm2.61i xyz|z=xA=1stA