Description: Value of an alternate definition of the 1st function. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | 1st2val | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv | |
|
2 | fveq2 | |
|
3 | df-ov | |
|
4 | simpl | |
|
5 | mpov | |
|
6 | 5 | eqcomi | |
7 | vex | |
|
8 | 4 6 7 | ovmpoa | |
9 | 8 | el2v | |
10 | 3 9 | eqtr3i | |
11 | 2 10 | eqtrdi | |
12 | vex | |
|
13 | 7 12 | op1std | |
14 | 11 13 | eqtr4d | |
15 | 14 | exlimivv | |
16 | 1 15 | sylbi | |
17 | vex | |
|
18 | vex | |
|
19 | 17 18 | pm3.2i | |
20 | ax6ev | |
|
21 | 19 20 | 2th | |
22 | 21 | opabbii | |
23 | df-xp | |
|
24 | dmoprab | |
|
25 | 22 23 24 | 3eqtr4ri | |
26 | 25 | eleq2i | |
27 | ndmfv | |
|
28 | 26 27 | sylnbir | |
29 | dmsnn0 | |
|
30 | 29 | biimpri | |
31 | 30 | necon1bi | |
32 | 31 | unieqd | |
33 | uni0 | |
|
34 | 32 33 | eqtrdi | |
35 | 28 34 | eqtr4d | |
36 | 1stval | |
|
37 | 35 36 | eqtr4di | |
38 | 16 37 | pm2.61i | |