Metamath Proof Explorer


Theorem 1wlkdlem4

Description: Lemma 4 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p P=⟨“XY”⟩
1wlkd.f F=⟨“J”⟩
1wlkd.x φXV
1wlkd.y φYV
1wlkd.l φX=YIJ=X
1wlkd.j φXYXYIJ
Assertion 1wlkdlem4 φk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk

Proof

Step Hyp Ref Expression
1 1wlkd.p P=⟨“XY”⟩
2 1wlkd.f F=⟨“J”⟩
3 1wlkd.x φXV
4 1wlkd.y φYV
5 1wlkd.l φX=YIJ=X
6 1wlkd.j φXYXYIJ
7 2 fveq1i F0=⟨“J”⟩0
8 1 2 3 4 5 6 1wlkdlem2 φXIJ
9 8 elfvexd φJV
10 s1fv JV⟨“J”⟩0=J
11 9 10 syl φ⟨“J”⟩0=J
12 7 11 eqtrid φF0=J
13 12 fveq2d φIF0=IJ
14 13 adantr φX=YIF0=IJ
15 14 5 eqtrd φX=YIF0=X
16 df-ne XY¬X=Y
17 16 6 sylan2br φ¬X=YXYIJ
18 13 adantr φ¬X=YIF0=IJ
19 17 18 sseqtrrd φ¬X=YXYIF0
20 15 19 ifpimpda φif-X=YIF0=XXYIF0
21 1 fveq1i P0=⟨“XY”⟩0
22 s2fv0 XV⟨“XY”⟩0=X
23 3 22 syl φ⟨“XY”⟩0=X
24 21 23 eqtrid φP0=X
25 1 fveq1i P1=⟨“XY”⟩1
26 s2fv1 YV⟨“XY”⟩1=Y
27 4 26 syl φ⟨“XY”⟩1=Y
28 25 27 eqtrid φP1=Y
29 eqeq12 P0=XP1=YP0=P1X=Y
30 sneq P0=XP0=X
31 30 adantr P0=XP1=YP0=X
32 31 eqeq2d P0=XP1=YIF0=P0IF0=X
33 preq12 P0=XP1=YP0P1=XY
34 33 sseq1d P0=XP1=YP0P1IF0XYIF0
35 29 32 34 ifpbi123d P0=XP1=Yif-P0=P1IF0=P0P0P1IF0if-X=YIF0=XXYIF0
36 24 28 35 syl2anc φif-P0=P1IF0=P0P0P1IF0if-X=YIF0=XXYIF0
37 20 36 mpbird φif-P0=P1IF0=P0P0P1IF0
38 c0ex 0V
39 oveq1 k=0k+1=0+1
40 0p1e1 0+1=1
41 39 40 eqtrdi k=0k+1=1
42 wkslem2 k=0k+1=1if-Pk=Pk+1IFk=PkPkPk+1IFkif-P0=P1IF0=P0P0P1IF0
43 41 42 mpdan k=0if-Pk=Pk+1IFk=PkPkPk+1IFkif-P0=P1IF0=P0P0P1IF0
44 38 43 ralsn k0if-Pk=Pk+1IFk=PkPkPk+1IFkif-P0=P1IF0=P0P0P1IF0
45 37 44 sylibr φk0if-Pk=Pk+1IFk=PkPkPk+1IFk
46 2 fveq2i F=⟨“J”⟩
47 s1len ⟨“J”⟩=1
48 46 47 eqtri F=1
49 48 oveq2i 0..^F=0..^1
50 fzo01 0..^1=0
51 49 50 eqtri 0..^F=0
52 51 a1i φ0..^F=0
53 52 raleqdv φk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkk0if-Pk=Pk+1IFk=PkPkPk+1IFk
54 45 53 mpbird φk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk