Description: Lemma 4 for 1wlkd . (Contributed by AV, 22-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1wlkd.p | |
|
1wlkd.f | |
||
1wlkd.x | |
||
1wlkd.y | |
||
1wlkd.l | |
||
1wlkd.j | |
||
Assertion | 1wlkdlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.p | |
|
2 | 1wlkd.f | |
|
3 | 1wlkd.x | |
|
4 | 1wlkd.y | |
|
5 | 1wlkd.l | |
|
6 | 1wlkd.j | |
|
7 | 2 | fveq1i | |
8 | 1 2 3 4 5 6 | 1wlkdlem2 | |
9 | 8 | elfvexd | |
10 | s1fv | |
|
11 | 9 10 | syl | |
12 | 7 11 | eqtrid | |
13 | 12 | fveq2d | |
14 | 13 | adantr | |
15 | 14 5 | eqtrd | |
16 | df-ne | |
|
17 | 16 6 | sylan2br | |
18 | 13 | adantr | |
19 | 17 18 | sseqtrrd | |
20 | 15 19 | ifpimpda | |
21 | 1 | fveq1i | |
22 | s2fv0 | |
|
23 | 3 22 | syl | |
24 | 21 23 | eqtrid | |
25 | 1 | fveq1i | |
26 | s2fv1 | |
|
27 | 4 26 | syl | |
28 | 25 27 | eqtrid | |
29 | eqeq12 | |
|
30 | sneq | |
|
31 | 30 | adantr | |
32 | 31 | eqeq2d | |
33 | preq12 | |
|
34 | 33 | sseq1d | |
35 | 29 32 34 | ifpbi123d | |
36 | 24 28 35 | syl2anc | |
37 | 20 36 | mpbird | |
38 | c0ex | |
|
39 | oveq1 | |
|
40 | 0p1e1 | |
|
41 | 39 40 | eqtrdi | |
42 | wkslem2 | |
|
43 | 41 42 | mpdan | |
44 | 38 43 | ralsn | |
45 | 37 44 | sylibr | |
46 | 2 | fveq2i | |
47 | s1len | |
|
48 | 46 47 | eqtri | |
49 | 48 | oveq2i | |
50 | fzo01 | |
|
51 | 49 50 | eqtri | |
52 | 51 | a1i | |
53 | 52 | raleqdv | |
54 | 45 53 | mpbird | |