| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2atm2at.j |
|
| 2 |
|
2atm2at.m |
|
| 3 |
|
2atm2at.z |
|
| 4 |
|
2atm2at.a |
|
| 5 |
|
hlop |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpr3 |
|
| 8 |
|
eqid |
|
| 9 |
3 8 4
|
0ltat |
|
| 10 |
6 7 9
|
syl2anc |
|
| 11 |
|
simpl |
|
| 12 |
|
simpr1 |
|
| 13 |
|
eqid |
|
| 14 |
13 1 4
|
hlatlej1 |
|
| 15 |
11 7 12 14
|
syl3anc |
|
| 16 |
|
simpr2 |
|
| 17 |
13 1 4
|
hlatlej1 |
|
| 18 |
11 7 16 17
|
syl3anc |
|
| 19 |
|
hllat |
|
| 20 |
19
|
adantr |
|
| 21 |
|
eqid |
|
| 22 |
21 4
|
atbase |
|
| 23 |
7 22
|
syl |
|
| 24 |
21 1 4
|
hlatjcl |
|
| 25 |
11 7 12 24
|
syl3anc |
|
| 26 |
21 1 4
|
hlatjcl |
|
| 27 |
11 7 16 26
|
syl3anc |
|
| 28 |
21 13 2
|
latlem12 |
|
| 29 |
20 23 25 27 28
|
syl13anc |
|
| 30 |
15 18 29
|
mpbi2and |
|
| 31 |
|
hlpos |
|
| 32 |
31
|
adantr |
|
| 33 |
21 3
|
op0cl |
|
| 34 |
6 33
|
syl |
|
| 35 |
21 2
|
latmcl |
|
| 36 |
20 25 27 35
|
syl3anc |
|
| 37 |
21 13 8
|
pltletr |
|
| 38 |
32 34 23 36 37
|
syl13anc |
|
| 39 |
10 30 38
|
mp2and |
|
| 40 |
21 8 3
|
opltn0 |
|
| 41 |
6 36 40
|
syl2anc |
|
| 42 |
39 41
|
mpbid |
|