Metamath Proof Explorer


Theorem 2irrexpq

Description: There exist irrational numbers a and b such that ( a ^c b ) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "classical proof" for theorem 1.2 of Bauer, p. 483. This proof is not acceptable in intuitionistic logic, since it is based on the law of excluded middle: Either ( ( sqrt2 ) ^c ( sqrt2 ) ) is rational, in which case ( sqrt2 ) , being irrational (see sqrt2irr ), can be chosen for both a and b , or ( ( sqrt2 ) ^c ( sqrt2 ) ) is irrational, in which case ( ( sqrt2 ) ^c ( sqrt2 ) ) can be chosen for a and ( sqrt2 ) for b , since ( ( ( sqrt2 ) ^c ( sqrt2 ) ) ^c ( sqrt2 ) ) = 2 is rational. For an alternate proof, which can be used in intuitionistic logic, see 2irrexpqALT . (Contributed by AV, 23-Dec-2022)

Ref Expression
Assertion 2irrexpq abab

Proof

Step Hyp Ref Expression
1 oveq1 a=2ab=2b
2 1 eleq1d a=2ab2b
3 oveq2 b=22b=22
4 3 eleq1d b=22b22
5 2 4 rspc2ev 2222abab
6 3ianor ¬2222¬2¬2¬22
7 sqrt2irr0 2
8 7 pm2.24i ¬2222222
9 2rp 2+
10 rpsqrtcl 2+2+
11 9 10 ax-mp 2+
12 rpre 2+2
13 rpge0 2+02
14 12 13 12 recxpcld 2+22
15 11 14 ax-mp 22
16 15 a1i ¬2222
17 id ¬22¬22
18 16 17 eldifd ¬2222
19 7 a1i ¬222
20 sqrt2re 2
21 20 recni 2
22 cxpmul 2+22222=222
23 11 20 21 22 mp3an 222=222
24 2re 2
25 0le2 02
26 remsqsqrt 20222=2
27 24 25 26 mp2an 22=2
28 27 oveq2i 222=22
29 2cn 2
30 cxpsqrtth 222=2
31 29 30 ax-mp 22=2
32 2z 2
33 zq 22
34 32 33 ax-mp 2
35 31 34 eqeltri 22
36 28 35 eqeltri 222
37 23 36 eqeltrri 222
38 37 a1i ¬22222
39 18 19 38 3jca ¬22222222
40 8 8 39 3jaoi ¬2¬2¬22222222
41 6 40 sylbi ¬2222222222
42 oveq1 a=22ab=22b
43 42 eleq1d a=22ab22b
44 oveq2 b=222b=222
45 44 eleq1d b=222b222
46 43 45 rspc2ev 222222abab
47 41 46 syl ¬2222abab
48 5 47 pm2.61i abab