Description: Lemma 3 for 2lgs . (Contributed by AV, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2lgslem2.n | |
|
Assertion | 2lgslem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgslem2.n | |
|
2 | nnz | |
|
3 | lgsdir2lem3 | |
|
4 | 2 3 | sylan | |
5 | elun | |
|
6 | ovex | |
|
7 | 6 | elpr | |
8 | 1 | 2lgslem3a1 | |
9 | 8 | a1d | |
10 | 9 | expcom | |
11 | 10 | impd | |
12 | 1 | 2lgslem3d1 | |
13 | 12 | a1d | |
14 | 13 | expcom | |
15 | 14 | impd | |
16 | 11 15 | jaoi | |
17 | 7 16 | sylbi | |
18 | 17 | imp | |
19 | iftrue | |
|
20 | 19 | adantr | |
21 | 18 20 | eqtr4d | |
22 | 21 | ex | |
23 | 6 | elpr | |
24 | 1 | 2lgslem3b1 | |
25 | 24 | expcom | |
26 | 1 | 2lgslem3c1 | |
27 | 26 | expcom | |
28 | 25 27 | jaoi | |
29 | 28 | imp | |
30 | 1re | |
|
31 | 1lt3 | |
|
32 | 30 31 | ltneii | |
33 | 32 | nesymi | |
34 | 3re | |
|
35 | 3lt7 | |
|
36 | 34 35 | ltneii | |
37 | 36 | neii | |
38 | 33 37 | pm3.2i | |
39 | eqeq1 | |
|
40 | 39 | notbid | |
41 | eqeq1 | |
|
42 | 41 | notbid | |
43 | 40 42 | anbi12d | |
44 | 38 43 | mpbiri | |
45 | 1lt5 | |
|
46 | 30 45 | ltneii | |
47 | 46 | nesymi | |
48 | 5re | |
|
49 | 5lt7 | |
|
50 | 48 49 | ltneii | |
51 | 50 | neii | |
52 | 47 51 | pm3.2i | |
53 | eqeq1 | |
|
54 | 53 | notbid | |
55 | eqeq1 | |
|
56 | 55 | notbid | |
57 | 54 56 | anbi12d | |
58 | 52 57 | mpbiri | |
59 | 44 58 | jaoi | |
60 | 59 | adantr | |
61 | ioran | |
|
62 | 61 7 | xchnxbir | |
63 | 60 62 | sylibr | |
64 | 63 | iffalsed | |
65 | 29 64 | eqtr4d | |
66 | 65 | a1d | |
67 | 66 | expimpd | |
68 | 23 67 | sylbi | |
69 | 22 68 | jaoi | |
70 | 5 69 | sylbi | |
71 | 4 70 | mpcom | |