Metamath Proof Explorer


Theorem 2lgslem3

Description: Lemma 3 for 2lgs . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem3 P¬2PNmod2=ifPmod81701

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 nnz PP
3 lgsdir2lem3 P¬2PPmod81735
4 2 3 sylan P¬2PPmod81735
5 elun Pmod81735Pmod817Pmod835
6 ovex Pmod8V
7 6 elpr Pmod817Pmod8=1Pmod8=7
8 1 2lgslem3a1 PPmod8=1Nmod2=0
9 8 a1d PPmod8=1¬2PNmod2=0
10 9 expcom Pmod8=1P¬2PNmod2=0
11 10 impd Pmod8=1P¬2PNmod2=0
12 1 2lgslem3d1 PPmod8=7Nmod2=0
13 12 a1d PPmod8=7¬2PNmod2=0
14 13 expcom Pmod8=7P¬2PNmod2=0
15 14 impd Pmod8=7P¬2PNmod2=0
16 11 15 jaoi Pmod8=1Pmod8=7P¬2PNmod2=0
17 7 16 sylbi Pmod817P¬2PNmod2=0
18 17 imp Pmod817P¬2PNmod2=0
19 iftrue Pmod817ifPmod81701=0
20 19 adantr Pmod817P¬2PifPmod81701=0
21 18 20 eqtr4d Pmod817P¬2PNmod2=ifPmod81701
22 21 ex Pmod817P¬2PNmod2=ifPmod81701
23 6 elpr Pmod835Pmod8=3Pmod8=5
24 1 2lgslem3b1 PPmod8=3Nmod2=1
25 24 expcom Pmod8=3PNmod2=1
26 1 2lgslem3c1 PPmod8=5Nmod2=1
27 26 expcom Pmod8=5PNmod2=1
28 25 27 jaoi Pmod8=3Pmod8=5PNmod2=1
29 28 imp Pmod8=3Pmod8=5PNmod2=1
30 1re 1
31 1lt3 1<3
32 30 31 ltneii 13
33 32 nesymi ¬3=1
34 3re 3
35 3lt7 3<7
36 34 35 ltneii 37
37 36 neii ¬3=7
38 33 37 pm3.2i ¬3=1¬3=7
39 eqeq1 Pmod8=3Pmod8=13=1
40 39 notbid Pmod8=3¬Pmod8=1¬3=1
41 eqeq1 Pmod8=3Pmod8=73=7
42 41 notbid Pmod8=3¬Pmod8=7¬3=7
43 40 42 anbi12d Pmod8=3¬Pmod8=1¬Pmod8=7¬3=1¬3=7
44 38 43 mpbiri Pmod8=3¬Pmod8=1¬Pmod8=7
45 1lt5 1<5
46 30 45 ltneii 15
47 46 nesymi ¬5=1
48 5re 5
49 5lt7 5<7
50 48 49 ltneii 57
51 50 neii ¬5=7
52 47 51 pm3.2i ¬5=1¬5=7
53 eqeq1 Pmod8=5Pmod8=15=1
54 53 notbid Pmod8=5¬Pmod8=1¬5=1
55 eqeq1 Pmod8=5Pmod8=75=7
56 55 notbid Pmod8=5¬Pmod8=7¬5=7
57 54 56 anbi12d Pmod8=5¬Pmod8=1¬Pmod8=7¬5=1¬5=7
58 52 57 mpbiri Pmod8=5¬Pmod8=1¬Pmod8=7
59 44 58 jaoi Pmod8=3Pmod8=5¬Pmod8=1¬Pmod8=7
60 59 adantr Pmod8=3Pmod8=5P¬Pmod8=1¬Pmod8=7
61 ioran ¬Pmod8=1Pmod8=7¬Pmod8=1¬Pmod8=7
62 61 7 xchnxbir ¬Pmod817¬Pmod8=1¬Pmod8=7
63 60 62 sylibr Pmod8=3Pmod8=5P¬Pmod817
64 63 iffalsed Pmod8=3Pmod8=5PifPmod81701=1
65 29 64 eqtr4d Pmod8=3Pmod8=5PNmod2=ifPmod81701
66 65 a1d Pmod8=3Pmod8=5P¬2PNmod2=ifPmod81701
67 66 expimpd Pmod8=3Pmod8=5P¬2PNmod2=ifPmod81701
68 23 67 sylbi Pmod835P¬2PNmod2=ifPmod81701
69 22 68 jaoi Pmod817Pmod835P¬2PNmod2=ifPmod81701
70 5 69 sylbi Pmod81735P¬2PNmod2=ifPmod81701
71 4 70 mpcom P¬2PNmod2=ifPmod81701