Description: Lemma 1 for 2lgslem3 . (Contributed by AV, 15-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2lgslem2.n | |
|
Assertion | 2lgslem3a1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgslem2.n | |
|
2 | nnnn0 | |
|
3 | 8nn | |
|
4 | nnrp | |
|
5 | 3 4 | ax-mp | |
6 | modmuladdnn0 | |
|
7 | 2 5 6 | sylancl | |
8 | simpr | |
|
9 | nn0cn | |
|
10 | 8cn | |
|
11 | 10 | a1i | |
12 | 9 11 | mulcomd | |
13 | 12 | adantl | |
14 | 13 | oveq1d | |
15 | 14 | eqeq2d | |
16 | 15 | biimpa | |
17 | 1 | 2lgslem3a | |
18 | 8 16 17 | syl2an2r | |
19 | oveq1 | |
|
20 | 2cnd | |
|
21 | 20 9 | mulcomd | |
22 | 21 | oveq1d | |
23 | nn0z | |
|
24 | 2rp | |
|
25 | mulmod0 | |
|
26 | 23 24 25 | sylancl | |
27 | 22 26 | eqtrd | |
28 | 19 27 | sylan9eqr | |
29 | 8 18 28 | syl2an2r | |
30 | 29 | rexlimdva2 | |
31 | 7 30 | syld | |
32 | 31 | imp | |