Metamath Proof Explorer


Theorem 2lgslem3a1

Description: Lemma 1 for 2lgslem3 . (Contributed by AV, 15-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem3a1 PPmod8=1Nmod2=0

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 nnnn0 PP0
3 8nn 8
4 nnrp 88+
5 3 4 ax-mp 8+
6 modmuladdnn0 P08+Pmod8=1k0P=k8+1
7 2 5 6 sylancl PPmod8=1k0P=k8+1
8 simpr Pk0k0
9 nn0cn k0k
10 8cn 8
11 10 a1i k08
12 9 11 mulcomd k0k8=8k
13 12 adantl Pk0k8=8k
14 13 oveq1d Pk0k8+1=8k+1
15 14 eqeq2d Pk0P=k8+1P=8k+1
16 15 biimpa Pk0P=k8+1P=8k+1
17 1 2lgslem3a k0P=8k+1N=2k
18 8 16 17 syl2an2r Pk0P=k8+1N=2k
19 oveq1 N=2kNmod2=2kmod2
20 2cnd k02
21 20 9 mulcomd k02k=k2
22 21 oveq1d k02kmod2=k2mod2
23 nn0z k0k
24 2rp 2+
25 mulmod0 k2+k2mod2=0
26 23 24 25 sylancl k0k2mod2=0
27 22 26 eqtrd k02kmod2=0
28 19 27 sylan9eqr k0N=2kNmod2=0
29 8 18 28 syl2an2r Pk0P=k8+1Nmod2=0
30 29 rexlimdva2 Pk0P=k8+1Nmod2=0
31 7 30 syld PPmod8=1Nmod2=0
32 31 imp PPmod8=1Nmod2=0