Metamath Proof Explorer


Theorem 2llnmat

Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses 2llnmat.m ˙=meetK
2llnmat.z 0˙=0.K
2llnmat.a A=AtomsK
2llnmat.n N=LLinesK
Assertion 2llnmat KHLXNYNXYX˙Y0˙X˙YA

Proof

Step Hyp Ref Expression
1 2llnmat.m ˙=meetK
2 2llnmat.z 0˙=0.K
3 2llnmat.a A=AtomsK
4 2llnmat.n N=LLinesK
5 simpl1 KHLXNYNXYX˙Y0˙KHL
6 hlatl KHLKAtLat
7 5 6 syl KHLXNYNXYX˙Y0˙KAtLat
8 5 hllatd KHLXNYNXYX˙Y0˙KLat
9 simpl2 KHLXNYNXYX˙Y0˙XN
10 eqid BaseK=BaseK
11 10 4 llnbase XNXBaseK
12 9 11 syl KHLXNYNXYX˙Y0˙XBaseK
13 simpl3 KHLXNYNXYX˙Y0˙YN
14 10 4 llnbase YNYBaseK
15 13 14 syl KHLXNYNXYX˙Y0˙YBaseK
16 10 1 latmcl KLatXBaseKYBaseKX˙YBaseK
17 8 12 15 16 syl3anc KHLXNYNXYX˙Y0˙X˙YBaseK
18 simprr KHLXNYNXYX˙Y0˙X˙Y0˙
19 eqid K=K
20 10 19 2 3 atlex KAtLatX˙YBaseKX˙Y0˙pApKX˙Y
21 7 17 18 20 syl3anc KHLXNYNXYX˙Y0˙pApKX˙Y
22 simp1rl KHLXNYNXYX˙Y0˙pApKX˙YXY
23 simp1l KHLXNYNXYX˙Y0˙pApKX˙YKHLXNYN
24 19 4 llncmp KHLXNYNXKYX=Y
25 23 24 syl KHLXNYNXYX˙Y0˙pApKX˙YXKYX=Y
26 simp1l1 KHLXNYNXYX˙Y0˙pApKX˙YKHL
27 26 hllatd KHLXNYNXYX˙Y0˙pApKX˙YKLat
28 simp1l2 KHLXNYNXYX˙Y0˙pApKX˙YXN
29 28 11 syl KHLXNYNXYX˙Y0˙pApKX˙YXBaseK
30 simp1l3 KHLXNYNXYX˙Y0˙pApKX˙YYN
31 30 14 syl KHLXNYNXYX˙Y0˙pApKX˙YYBaseK
32 10 19 1 latleeqm1 KLatXBaseKYBaseKXKYX˙Y=X
33 27 29 31 32 syl3anc KHLXNYNXYX˙Y0˙pApKX˙YXKYX˙Y=X
34 25 33 bitr3d KHLXNYNXYX˙Y0˙pApKX˙YX=YX˙Y=X
35 34 necon3bid KHLXNYNXYX˙Y0˙pApKX˙YXYX˙YX
36 22 35 mpbid KHLXNYNXYX˙Y0˙pApKX˙YX˙YX
37 simp3 KHLXNYNXYX˙Y0˙pApKX˙YpKX˙Y
38 10 19 1 latmle1 KLatXBaseKYBaseKX˙YKX
39 27 29 31 38 syl3anc KHLXNYNXYX˙Y0˙pApKX˙YX˙YKX
40 hlpos KHLKPoset
41 26 40 syl KHLXNYNXYX˙Y0˙pApKX˙YKPoset
42 10 3 atbase pApBaseK
43 42 3ad2ant2 KHLXNYNXYX˙Y0˙pApKX˙YpBaseK
44 27 29 31 16 syl3anc KHLXNYNXYX˙Y0˙pApKX˙YX˙YBaseK
45 simp2 KHLXNYNXYX˙Y0˙pApKX˙YpA
46 10 19 27 43 44 29 37 39 lattrd KHLXNYNXYX˙Y0˙pApKX˙YpKX
47 eqid K=K
48 19 47 3 4 atcvrlln2 KHLpAXNpKXpKX
49 26 45 28 46 48 syl31anc KHLXNYNXYX˙Y0˙pApKX˙YpKX
50 10 19 47 cvrnbtwn4 KPosetpBaseKXBaseKX˙YBaseKpKXpKX˙YX˙YKXp=X˙YX˙Y=X
51 41 43 29 44 49 50 syl131anc KHLXNYNXYX˙Y0˙pApKX˙YpKX˙YX˙YKXp=X˙YX˙Y=X
52 37 39 51 mpbi2and KHLXNYNXYX˙Y0˙pApKX˙Yp=X˙YX˙Y=X
53 neor p=X˙YX˙Y=XpX˙YX˙Y=X
54 52 53 sylib KHLXNYNXYX˙Y0˙pApKX˙YpX˙YX˙Y=X
55 54 necon1d KHLXNYNXYX˙Y0˙pApKX˙YX˙YXp=X˙Y
56 36 55 mpd KHLXNYNXYX˙Y0˙pApKX˙Yp=X˙Y
57 56 3exp KHLXNYNXYX˙Y0˙pApKX˙Yp=X˙Y
58 57 reximdvai KHLXNYNXYX˙Y0˙pApKX˙YpAp=X˙Y
59 21 58 mpd KHLXNYNXYX˙Y0˙pAp=X˙Y
60 risset X˙YApAp=X˙Y
61 59 60 sylibr KHLXNYNXYX˙Y0˙X˙YA