Metamath Proof Explorer


Theorem 2lplnj

Description: The join of two different lattice planes in a (3-dimensional) lattice volume equals the volume. (Contributed by NM, 12-Jul-2012)

Ref Expression
Hypotheses 2lplnj.l ˙=K
2lplnj.j ˙=joinK
2lplnj.p P=LPlanesK
2lplnj.v V=LVolsK
Assertion 2lplnj KHLXPYPWVX˙WY˙WXYX˙Y=W

Proof

Step Hyp Ref Expression
1 2lplnj.l ˙=K
2 2lplnj.j ˙=joinK
3 2lplnj.p P=LPlanesK
4 2lplnj.v V=LVolsK
5 eqid BaseK=BaseK
6 eqid AtomsK=AtomsK
7 5 1 2 6 3 islpln2 KHLXPXBaseKqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙s
8 simpr XBaseKqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙sqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙s
9 7 8 syl6bi KHLXPqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙s
10 5 1 2 6 3 islpln2 KHLYPYBaseKtAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
11 simpr YBaseKtAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vtAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
12 10 11 syl6bi KHLYPtAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
13 9 12 anim12d KHLXPYPqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
14 13 imp KHLXPYPqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
15 14 3adantr3 KHLXPYPWVqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
16 15 3adant3 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v
17 simpl33 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKX=q˙r˙s
18 17 3ad2ant1 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX=q˙r˙s
19 simp33 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vY=t˙u˙v
20 18 19 oveq12d KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=q˙r˙s˙t˙u˙v
21 simp11 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙sKHL
22 simp123 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙sWV
23 21 22 jca KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙sKHLWV
24 23 adantr KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKKHLWV
25 24 3ad2ant1 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vKHLWV
26 simp2l KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙sqAtomsK
27 simp2rl KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙srAtomsK
28 simp2rr KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙ssAtomsK
29 26 27 28 3jca KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙sqAtomsKrAtomsKsAtomsK
30 29 adantr KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKqAtomsKrAtomsKsAtomsK
31 30 3ad2ant1 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vqAtomsKrAtomsKsAtomsK
32 simpl31 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKqr
33 32 3ad2ant1 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vqr
34 simpl32 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsK¬s˙q˙r
35 34 3ad2ant1 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v¬s˙q˙r
36 33 35 jca KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vqr¬s˙q˙r
37 simp1r KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vtAtomsK
38 simp2l KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vuAtomsK
39 simp2r KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vvAtomsK
40 37 38 39 3jca KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vtAtomsKuAtomsKvAtomsK
41 simp31 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vtu
42 simp32 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙v¬v˙t˙u
43 41 42 jca KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vtu¬v˙t˙u
44 simpl13 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKX˙WY˙WXY
45 44 3ad2ant1 KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙WY˙WXY
46 breq1 X=q˙r˙sX˙Wq˙r˙s˙W
47 neeq1 X=q˙r˙sXYq˙r˙sY
48 46 47 3anbi13d X=q˙r˙sX˙WY˙WXYq˙r˙s˙WY˙Wq˙r˙sY
49 breq1 Y=t˙u˙vY˙Wt˙u˙v˙W
50 neeq2 Y=t˙u˙vq˙r˙sYq˙r˙st˙u˙v
51 49 50 3anbi23d Y=t˙u˙vq˙r˙s˙WY˙Wq˙r˙sYq˙r˙s˙Wt˙u˙v˙Wq˙r˙st˙u˙v
52 48 51 sylan9bb X=q˙r˙sY=t˙u˙vX˙WY˙WXYq˙r˙s˙Wt˙u˙v˙Wq˙r˙st˙u˙v
53 18 19 52 syl2anc KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙WY˙WXYq˙r˙s˙Wt˙u˙v˙Wq˙r˙st˙u˙v
54 45 53 mpbid KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vq˙r˙s˙Wt˙u˙v˙Wq˙r˙st˙u˙v
55 1 2 6 4 2lplnja KHLWVqAtomsKrAtomsKsAtomsKqr¬s˙q˙rtAtomsKuAtomsKvAtomsKtu¬v˙t˙uq˙r˙s˙Wt˙u˙v˙Wq˙r˙st˙u˙vq˙r˙s˙t˙u˙v=W
56 25 31 36 40 43 54 55 syl321anc KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vq˙r˙s˙t˙u˙v=W
57 20 56 eqtrd KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
58 57 3exp KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
59 58 rexlimdvv KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
60 59 rexlimdva KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
61 60 3exp KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
62 61 expdimp KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
63 62 rexlimdvv KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
64 63 rexlimdva KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
65 64 impd KHLXPYPWVX˙WY˙WXYqAtomsKrAtomsKsAtomsKqr¬s˙q˙rX=q˙r˙stAtomsKuAtomsKvAtomsKtu¬v˙t˙uY=t˙u˙vX˙Y=W
66 16 65 mpd KHLXPYPWVX˙WY˙WXYX˙Y=W