| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lplnj.l |  | 
						
							| 2 |  | 2lplnj.j |  | 
						
							| 3 |  | 2lplnj.p |  | 
						
							| 4 |  | 2lplnj.v |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 1 2 6 3 | islpln2 |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 7 8 | biimtrdi |  | 
						
							| 10 | 5 1 2 6 3 | islpln2 |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 10 11 | biimtrdi |  | 
						
							| 13 | 9 12 | anim12d |  | 
						
							| 14 | 13 | imp |  | 
						
							| 15 | 14 | 3adantr3 |  | 
						
							| 16 | 15 | 3adant3 |  | 
						
							| 17 |  | simpl33 |  | 
						
							| 18 | 17 | 3ad2ant1 |  | 
						
							| 19 |  | simp33 |  | 
						
							| 20 | 18 19 | oveq12d |  | 
						
							| 21 |  | simp11 |  | 
						
							| 22 |  | simp123 |  | 
						
							| 23 | 21 22 | jca |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 24 | 3ad2ant1 |  | 
						
							| 26 |  | simp2l |  | 
						
							| 27 |  | simp2rl |  | 
						
							| 28 |  | simp2rr |  | 
						
							| 29 | 26 27 28 | 3jca |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 30 | 3ad2ant1 |  | 
						
							| 32 |  | simpl31 |  | 
						
							| 33 | 32 | 3ad2ant1 |  | 
						
							| 34 |  | simpl32 |  | 
						
							| 35 | 34 | 3ad2ant1 |  | 
						
							| 36 | 33 35 | jca |  | 
						
							| 37 |  | simp1r |  | 
						
							| 38 |  | simp2l |  | 
						
							| 39 |  | simp2r |  | 
						
							| 40 | 37 38 39 | 3jca |  | 
						
							| 41 |  | simp31 |  | 
						
							| 42 |  | simp32 |  | 
						
							| 43 | 41 42 | jca |  | 
						
							| 44 |  | simpl13 |  | 
						
							| 45 | 44 | 3ad2ant1 |  | 
						
							| 46 |  | breq1 |  | 
						
							| 47 |  | neeq1 |  | 
						
							| 48 | 46 47 | 3anbi13d |  | 
						
							| 49 |  | breq1 |  | 
						
							| 50 |  | neeq2 |  | 
						
							| 51 | 49 50 | 3anbi23d |  | 
						
							| 52 | 48 51 | sylan9bb |  | 
						
							| 53 | 18 19 52 | syl2anc |  | 
						
							| 54 | 45 53 | mpbid |  | 
						
							| 55 | 1 2 6 4 | 2lplnja |  | 
						
							| 56 | 25 31 36 40 43 54 55 | syl321anc |  | 
						
							| 57 | 20 56 | eqtrd |  | 
						
							| 58 | 57 | 3exp |  | 
						
							| 59 | 58 | rexlimdvv |  | 
						
							| 60 | 59 | rexlimdva |  | 
						
							| 61 | 60 | 3exp |  | 
						
							| 62 | 61 | expdimp |  | 
						
							| 63 | 62 | rexlimdvv |  | 
						
							| 64 | 63 | rexlimdva |  | 
						
							| 65 | 64 | impd |  | 
						
							| 66 | 16 65 | mpd |  |